
МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ
ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ

УНИВЕРСИТЕТ (МАДИ)

И.Э. СААКЯН, И.А. ЕВСТРАТОВА

ИНФОРМАТИКА
Часть 3. Основы программирования

В печать
Проректор
по учебной работе Татаринов В.В.

Ц
ен
а

10
70

 р
уб

.

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ
РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ
ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ
ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ (МАДИ)»

Кафедра «Автоматизированные системы управления»

И.Э. СААКЯН, И.А. ЕВСТРАТОВА

ИНФОРМАТИКА
Часть 3. Основы программирования

УЧЕБНОЕ ПОСОБИЕ

Допущено Федеральным учебно-методическим объединением в
системе высшего образования по укрупненной группе

специальностей и направлений подготовки высшего образования
09.00.00 «Информатика и вычислительная техника» в качестве
учебного пособия для студентов высших учебных заведений,
обучающихся по направлению подготовки бакалавра 09.03.02

«Информационные системы и технологии»

МОСКВА
МАДИ
2022

УДК 004.43:378.147
ББК 32.97

С120
Рецензенты:

доктор технических наук, профессор МГТУ им. Н.Э. Баумана
В.Ю. Строганов;

доктор технических наук, профессор МАДИ А.В. Остроух;

Саакян, И.Э.

С120 Информатика. В 6 частях. Часть 3. Основы программиро-
вания: учеб. пособие / И.Э. Саакян, И.А. Евстратова. – М.:
МАДИ, 2022. – 212 с.

Представленный материал предназначен для обеспечения

учебного процесса по дисциплинам «Информатика», «Информатика
и основы программирования», «Информационные технологии» с
обучающимися первого и второго курсов всех направлений подго-
товки в рамках ФГОС ВО третьего поколения (3+) и актуализирован-
ных ФГОС ВО (3++).

Третья часть учебного пособия посвящена основам програм-
мирования на алгоритмических языках Паскаль (язык со строгой ти-
пизацией и интуитивно понятным синтаксисом) и Бейсик (символь-
ный язык программирования общего назначения для начинающих) в

реализациях соответственно ܲܽܶܧܰ.ܥܤܣ݈ܽܿݏ (версия 2015 г.) и ܸܣܤ

для ݐ݂݋ݏ݋ݎܿ݅ܯ	݂݂ܱ݁ܿ݅	2010 െ 2019.
Пособие предназначено для обучающихся всех направлений

подготовки факультета управления, оно может быть полезно обуча-
ющимся других факультетов, интересующихся информатикой, а
также начинающим программистам.

УДК 004.43:378.147
ББК 32.97

© МАДИ, 2022

3

Оглавление

ВВЕДЕНИЕ .. 7

Глава 1. ЧТО ТАКОЕ «ПРОГРАММИРОВАНИЕ» 10

1.1. Что такое «программа» и как её исполняет компьютер 10

1.2. Языки высокого уровня. Компиляторы и интерпретаторы 11

1.2.1. 13 ... ࢀࡱࡺ.࡯࡮࡭࢒ࢇࢉ࢙ࢇࡼ

1.2.2. 15 ... ࢔࢕࢏࢚ࢇࢉ࢏࢒࢖࢖࡭	࢘࢕ࢌ	ࢉ࢏࢙ࢇ࡮	࢒ࢇ࢛࢙࢏ࢂ

1.3. Технология создания программ ... 20

1.4. Системы и среды программирования .. 21

Контрольные вопросы к главе 1 ... 23

Глава 2. СРЕДА РАЗРАБОТКИ .. 24

2.1. Среда разработки 24 .. ࢀࡱࡺ.࡯࡮࡭࢒ࢇࢉ࢙ࢇࡼ

2.2 Применение макрорекордера ... 28

2.2.1. Макрорекордер в ࢊ࢘࢕ࢃ и ࢒ࢋࢉ࢞ࡱ: запуск,

приемы работы, возможности .. 28

2.2.2. Запуск макроса после создания: диалоговые окна,

панели инструментов, меню и командная строка 32

2.3. Интегрированная среда разработки 40 ࡭࡮ࢂ

2.3.1. Окно ࢚ࢉࢋ࢐࢕࢘ࡼ (Окно проекта) ... 43

2.3.2. Окно ࢙ࢋ࢏࢚࢘ࢋ࢖࢕࢘ࡼ (Окно свойств) ... 44

2.3.3. Окно ࢚ࢉࢋ࢐࢈ࡻ	࢘ࢋ࢙࢝࢕࢘࡮ (Окно просмотра объектов) 44

2.3.4. Окно ࢋࢊ࢕࡯ (Окно редактора кода) 46

2.3.5. Окно ࢓࢘࢕ࡲ࢘ࢋ࢙ࢁ (Окно редактирования форм) 48

2.3.6. Окно ࢋ࢚ࢇ࢏ࢊࢋ࢓࢓ࡵ (Окно проверки) 49

2.3.7. Окно ࢙࢒ࢇࢉ࢕ࡸ (Окно локальных переменных) 49

2.3.8. Окно ࢙ࢋࢎࢉ࢚ࢇࢃ (Окно контрольных значений) 49

2.3.9. Отладчик ࢘ࢋࢍࢍ࢛࢈ࢋࡰ (пошаговая отладка кода) 50

Контрольные вопросы к главе 2 ... 53

Глава 3. ТИПЫ ДАННЫХ .. 54

3.1. Языки без типов ... 55

3.2. Преимущества от использования типов данных 57

3.3. Контроль типов и системы типизации 58

4

3.4. Классификация типов данных .. 59

3.4.1. Простые .. 59

3.4.2. Составные (сложные) .. 60

3.4.3. Класс ... 60

3.5. Типы данных в 60 .. ࢀࡱࡺ.࡯࡮࡭࢒ࢇࢉ࢙ࢇࡼ

3.6. Типы данных в 64 ... ࡭࡮ࢂ

Контрольные вопросы к главе 3 ... 66

Глава 4. СТРУКТУРА ПРОГРАММЫ ... 67

4.1. Структура программы 67 ࢀࡱࡺ.࡯࡮࡭࢒ࢇࢉ࢙ࢇࡼ

4.1.1. Алфавит .. 67

4.1.2. Идентификатор .. 67

4.1.3. Комментарий .. 69

4.1.4. Структура программы на Pascal ... 70

4.1.5. Раздел описания меток ... 71

4.1.6. Раздел описания констант .. 71

4.1.7. Раздел описания переменных .. 72

4.1.8. Раздел описания типов .. 76

4.1.9. Раздел USES .. 76

4.2. Структура программы на 80 .. ࡭࡮ࢂ

4.2.1. Процедуры и функции .. 89

4.2.2. Редактор ࡭࡮ࢂ: получение списка свойств и методов,

список параметров, автоматическое дополнение слов 91

4.2.3. Разделы справки ࡭࡮ࢂ, приёмы нахождения нужной

информации .. 93

Контрольные вопросы к главе 4 ... 95

Глава 5. РАЗНОВИДНОСТИ СТРУКТУР АЛГОРИТМОВ 96

5.1. Простые типы данных для переменных и констант

 96 .. (ࢀࡱࡺ.࡯࡮࡭࢒ࢇࢉ࢙ࢇࡼ)

5.2. Запись данных в память, или оператор присваивания

 105 .. (ࢀࡱࡺ.࡯࡮࡭࢒ࢇࢉ࢙ࢇࡼ)

5.3. Арифметические операции, функции, выражения.

Арифметический оператор присваивания

 106 .. (ࢀࡱࡺ.࡯࡮࡭࢒ࢇࢉ࢙ࢇࡼ)

5

5.4. Ввод с клавиатуры и вывод данных на экран дисплея

 110 .. (ࢀࡱࡺ.࡯࡮࡭࢒ࢇࢉ࢙ࢇࡼ)

5.5. Главные правила синтаксиса 115 ... ࡭࡮ࢂ

5.5.1. Типы данных 115 ...࡭࡮ࢂ

5.5.2. 117 .. ࢚࢏ࢉ࢏࢒࢖࢞ࡱ	࢔࢕࢏࢚࢖ࡻ

5.5.3. Область действия переменных и констант 118

5.5.4. Операторы ࡭࡮ࢂ: арифметические, логические,

сравнения, присвоения... 120

5.5.5. Переменные и типы данных .. 123

5.5.6. Константы, объявление, ключевое слово ࢚࢙࢔࢕࡯,

встроенные константы, ࢜130 ... ࢌࡸ࢘࡯࢈

5.5.7. Функция 131 .. ࢞࢕࡮ࢍ࢙ࡹ

5.5.8. Функция 136 ... ࢞࢕࡮࢚࢛࢖࢔ࡵ

5.6. Примеры линейных программ на ࢀࡱࡺ.࡯࡮࡭࢒ࢇࢉ࢙ࢇࡼ и

 139 ... ࡭࡮ࢂ

5.7. Разветвляющиеся программы на ࢀࡱࡺ.࡯࡮࡭࢒ࢇࢉ࢙ࢇࡼ и

 142 ... ࡭࡮ࢂ

5.7.1. Условный оператор (ࢀࡱࡺ.࡯࡮࡭࢒ࢇࢉ࢙ࢇࡼ) 143

5.7.2. Операторы условного и безусловного перехода

 148 ... (࡭࡮ࢂ)

5.8. Циклические программы ... 152

5.8.1. Цикл с предусловием (ࢀࡱࡺ.࡯࡮࡭࢒ࢇࢉ࢙ࢇࡼ) 154

5.8.2. Цикл с постусловием (ࢀࡱࡺ.࡯࡮࡭࢒ࢇࢉ࢙ࢇࡼ) 157

5.8.3. Оператор цикла FOR (ࢀࡱࡺ.࡯࡮࡭࢒ࢇࢉ࢙ࢇࡼ) 161

5.8.4. Оператор Break, Continue (ࢀࡱࡺ.࡯࡮࡭࢒ࢇࢉ࢙ࢇࡼ) 163

5.8.5. Циклы в 165 ... ࡭࡮ࢂ

5.8.5.1. Цикл For…Next .. 166

5.8.5.2. Цикл For Each .. 166

5.8.5.3. Оператор Exit For .. 167

5.8.5.4. Цикл Do While .. 167

5.8.5.5. Цикл Do Until .. 169

5.8.6. Массивы (ࢀࡱࡺ.࡯࡮࡭࢒ࢇࢉ࢙ࢇࡼ) ... 171

5.8.7. Массивы (࡭࡮ࢂ) ... 176

6

5.8.7.1. Использование циклов с массивами (VBA) 179

5.8.7.2. Краткое руководство по массивам (VBA) 186

Контрольные вопросы к главе 5 ... 188

Глава 6. ПОЛЬЗОВАТЕЛЬСКИЕ ПРОЦЕДУРЫ И ФУНКЦИИ 189

6.1. Описание и вызов процедур и функций

 190 .. (ࢀࡱࡺ.࡯࡮࡭࢒ࢇࢉ࢙ࢇࡼ)

6.2. Процедуры и функции. Виды процедур (࡭࡮ࢂ) 195

6.2.1. Синтаксис функции .. 195

6.2.2. Компоненты функции ... 195

6.2.3. Видимость функции ... 196

6.2.4. Добавление описания функции .. 197

6.2.5. Метод 199 ࢙࢔࢕࢏࢚࢖ࡻ࢕࢘ࢉࢇࡹ.࢔࢕࢏࢚ࢇࢉ࢏࢒࢖࢖࡭

Контрольные вопросы к главе 6 ... 201

Глава 7. СРАВНИТЕЛЬНЫЙ СИНТАКСИС ЯЗЫКОВ

ПРОГРАММИРОВАНИЯ (СООТВЕТСТВИЕ) 202

СПИСОК ЛИТЕРАТУРЫ ... 211

7

ВВЕДЕНИЕ

Основное назначение любого языка как средства общения

между субъектами – донести информацию с минимальным искаже-

нием и потерями. Смысл использования языка (назовём это обще-

нием) обусловлен субъектами общения, т.е. теми, кто «говорит» и

«слушает». Нет смысла передавать информацию, которую не спосо-

бен понять говорящий или слушающий. В век всеобщей компьютери-

зации такими субъектами полноправно становятся человек и компь-

ютер, т.е. языковые средства необходимы для понимания слушателя

(компилятора) и говорящего (программиста). И это неплохо работает

пока слушатель и говорящий неизменны. При этом «слушателю» для

понимания «говорящий» (программист) передаёт список последова-

тельно записанных инструкций (инструкции называют кодом), кото-

рый называют – программой, а язык, на котором записан этот список,

– языком программирования. В идеале программа – это не способ

управления компьютером. Это формализация знаний программиста

о задаче и способах её решения. Основное назначение современного

языка программирования – позволить программисту сделать это с

минимальными искажениями и потерями. И язык должен позволять

работать с собой на произвольном уровне понимания программиста.

Поэтому он должен по крайней мере в основе своей быть независи-

мым от «говорящего» и «слушающего». Только тогда он сможет адап-

тироваться под каждого конкретного «пользователя».

С другой стороны, каким бы совершенным ни был компьютер,

без программного обеспечения он представляет собой просто груду

металла и пластика. Именно программы определяют, что и как де-

лает компьютер, в какой последовательности он выполняет те или

иные операции.

Первые языки программирования начали появляться в начале

пятидесятых годов прошлого века и использовались для преобразо-

вания простых арифметических выражений в машинный код. Машин-

ный код – это система команд вычислительной машины, интерпре-

тируемых непосредственно микропроцессором. Но человеку писать

8

программу в машинных кодах очень неудобно. Для того чтобы облег-

чить труд программиста, и начали создаваться языки программиро-

вания.

Языки программирования делятся на языки высокого уровня и

низкого. Чем выше уровень языка, тем легче на нем писать програм-

мисту. Такой язык более понятен человеку, так как позволяет с помо-

щью простых смысловых конструкций задавать необходимую после-

довательность действий. После создания программы происходит её

компиляция – то есть автоматический перевод в понятный процес-

сору язык машинных кодов. Языки низкого уровня находятся гораздо

ближе к языку машинных кодов, поэтому писать на них труднее. Но у

них есть своё преимущество – написанные на таком языке про-

граммы получаются очень быстрыми и компактными. Наиболее попу-

лярным низкоуровневым языком является ݎ݈ܾ݁݉݁ݏݏܣ.

Программирование сегодня – это бурно развивающаяся от-
расль производства программных продуктов. В конце прошлого века
общаться с компьютерами можно было лишь с помощью программи-
рования, и поэтому программирование изучали фактически во всех
учебных заведениях (в т. ч. в школах и вузах). Времена изменились,
общаться с компьютерами можно уже с помощью готовых компьютер-
ных программ, и нужда в массовом обучении программированию
вроде бы отпала. Однако все оказалось не так просто. В современ-
ные прикладные пакеты включаются, как правило, дополнительные
средства программирования, обеспечивающие расширение возмож-
ностей этих пакетов. Например, практически в любом пакете

ሺܵܯ	ܱ݂݂݅ܿ݁) есть среда программирования ܸܣܤ

-обеспечивающая расширение воз ,(ݏ݊݋݅ݐ݈ܽܿ݅݌݌ܣ	ݎ݋݂	ܿ݅ݏܽܤ	݈ܽݑݏܸ݅)
можностей этого пакета; профессиональная работа с системой «1С
Предприятие» требует постоянного программирования для
настройки на потребности каждой фирмы. Речь уже идёт о новом под-
ходе, в рамках которого программирование – это обязательная ком-
понента подготовки специалистов, собирающихся профессионально
работать в определённой сфере, в которой предполагается исполь-

зование ܶܫ-технологий.

9

Программирование сегодня – это не только и не столько знание
языка программирования. Прежде всего это знание технологии про-
граммирования, умение проектировать и разрабатывать программы
и программные комплексы на основе этой технологии, умение стро-
ить модели, ставить задачи и иметь представление о коллективной
разработке программных продуктов. Все это принято называть
«культурой программирования».

В данном пособии вы познакомитесь с языками программирова-

ния: Паскаль (точнее, с его разновидностью ܱܾ݆݁ܿݐ	݈ܽܿݏܽܲ) и ܸܣܤ –

-современным диалектом языка про -	݊݋݅ݐ݈ܽܿ݅݌݌ܣ	ݎ݋݂	ܿ݅ݏܽܤ	݈ܽݑݏܸ݅

граммирования ܥܫܵܣܤ, который был создан в начале 60-х годов

 сокращение от Beginner’s All – Purpose Symbolic – ࡯ࡵࡿ࡭࡮)
Instruction Code, или символьный язык программирования общего
назначения для начинающих), c элементами структурного програм-
мирования (т. е. программирования без использования оператора
безусловного перехода), с технологией проектирования «сверху
вниз», с модульным программированием (т. е. с разбиением про-
граммы на подпрограммы для удобства отладки и коллективной реа-
лизации) и элементами объектно-ориентированного программирова-
ния.

10

Глава 1. ЧТО ТАКОЕ «ПРОГРАММИРОВАНИЕ»

1.1. Что такое «программа» и как её исполняет компьютер

Компьютер представляет собой устройство для исполнения

программ. «Мозгом» компьютера является процессор, который при-

зван «понимать» и исполнять эти программы. «Программа» – это по-

следовательность предписаний (команд), записанных на языке, по-

нятном исполнителю.

В нашем случае исполнителем является процессор. А что за

язык, который этот процессор понимает? Как известно, компьютер

хранит информацию, закодированную с помощью двоичных чисел.

Программа для компьютера – это обычная информация, поэтому она

хранится в виде набора двоичных чисел (о двоичных числах см. [1],

[2]). Но согласно определению, это не простой набор чисел, а именно

набор команд, понятных процессору. Сочетание команд, которые по-

нимает процессор, и правил их написания принято называть машин-

ным языком, или языком программирования низкого уровня. Напри-

мер, предположим, что некий процессор понимает следующие опера-

ции:

00000001 – сложить;

00000111 – разделить;

00000100 – переслать из одной ячейки в другую.

Правило написания команды для современного процессора вы-
глядит следующим образом:

<код операции> <адрес первого операнда> <адрес второго опе-
ранда>.

Здесь под операндом понимается некоторое значение, с кото-
рым производится операция; адрес операнда – это адрес блока па-
мяти, в котором находится операнд.

В таком случае, например, фрагмент программы, определяю-
щей среднее арифметическое четырёх чисел, будет выглядеть сле-
дующим образом (табл. 1):

11

Таблица 1

Пример компьютерной программы в двоичных кодах

Код
операции

Адрес 1 Адрес 2 Комментарии

00000001 00011000 00011001 Сложить числа, хранящиеся в блоках па-
мяти по адресам 00011000 и 00011001 и
поместить результат в блок памяти с ад-

ресом 00011001
00000001 00011001 00011011 Сложить полученную сумму из блока па-

мяти 00011001 и третье число, размещён-
ное в блоке памяти 00011011, и поместить

результат в блок памяти с адресом
00011011

00000001 00011011 00011110 Сложить полученную сумму из блока па-
мяти 00011011 и четвёртое число, разме-
щённое в блоке памяти 00011110, и поме-
стить результат в блок памяти с адресом

00011110
00000111 00011110 00111110 Разделить полученную сумму на число,

хранящееся по адресу 00111110, и поме-
стить по тому же адресу результат

00000100 00111110 10111000 Переслать содержимое блока памяти с ад-
ресом 00111110 в блок памяти с адресом

10111000

Разумеется, у реальной программы есть специальный заголо-
вок, по которому процессор определяет, что это именно программа,
и на практике программы существенно сложнее приведённого при-
мера. Однако в редких случаях с помощью машинных кодов пишутся
программы для специальных устройств (стиральные машины, управ-
ляемые ракеты и т. п.), в которые встроены относительно слабые
процессоры и ограниченная оперативная память, но от которых тре-
буется практически мгновенное исполнение команд.

Программы, написанные с помощью машинных кодов, зани-
мают существенно меньшую память, чем созданные с помощью дру-
гих средств, и, как следствие, быстрее исполняются.

1.2. Языки высокого уровня. Компиляторы и интерпретаторы

Технология написания программ на машинных языках весьма
трудоёмка и для создания больших программ фактически непри-
годна. Именно поэтому стали придумывать языки высокого уровня,

12

т. е. языки, с помощью которых можно было бы легко и удобно разра-
батывать большие программы. Кроме того, подобные языки должны
быть доступны большому кругу людей. Это значит, что в конечном
итоге язык программирования должен максимально приблизиться к
естественному языку человека. Идеал не достигнут, но языки про-
граммирования уже стали близки к естественным языкам. Но как в
этом случае процессор понимает программы, написанные на этих
языках? Да никак. Дело в том, что языки высокого уровня созданы
для того, чтобы люди могли естественным образом сформулировать
перечень действий, выполняемых компьютером. Ввиду того, что ком-
пьютеры языков высокого уровня не понимают, были разработаны
специальные программы, называемые трансляторами.

Транслятор (࢚࢘࢘࢕࢚ࢇ࢒࢙࢔ࢇ) – это программа, предназначенная
для перевода (трансляции) описания алгоритма с одного формаль-
ного языка на другой.

Алгоритм создания программы теперь предусматривает ис-
пользование шага трансляции (рис. 1).

Этап превращения программы, написанной на языке высокого
уровня, в машинный код реализуется в двух вариантах. В первом слу-
чае транслятор берет из файла программу на языке высокого уровня

Program ex1;
uses Graph,Graph0;
var x:integer;
color: integer;

begin

Транслятор

1000101001010101011
0101010101010111010
1000101011110101010
1011101010101010101

010101010

Текст программы на
языке программирования
высокого уровня

Текст программы
в машинном коде

Рис. 1. Алгоритм трансляции программы

13

и переводит её целиком в программу на машинном языке, создавая
отдельный файл с расширением .exe (или .com). Программу, запи-
санную в такой файл, принято называть исполняемым модулем, а
транслятор, который выполняет такой перевод, называют компиля-
тором. Программы, написанные на Паскале, используют компиля-
тор.

Во втором случае транслятор берет из файла с программой на
языке высокого уровня по одному предписанию (команде), трансли-
рует её в машинный код и передаёт полученную команду процессору
для исполнения. Такой транслятор называют интерпретатором.

На таком принципе работают программы, написанные на ܸܣܤ.

Существуют несколько сотен языков программирования высо-
кого уровня. Каждый из них предназначен для решения определён-

ного круга задач. Например, ܥܫܵܣܤ и ܰܣܴܴܱܶܨ – для вычислений,

 – ݈ܽܿݏܽܲ ,для создания систем искусственного интеллекта – ܩܱܮܱܴܲ	

для обучения программированию, ܮܱܤܱܥ – для обработки больших

объёмов данных, ܥ ൅ ൅ – для профессионального программирования
больших приложений и т. п.

Язык программирования – это специально обусловленный
набор символов, слов и мнемонических (особым образом организо-
ванных и заранее оговорённых) сокращений, используемых для за-
писи набора команд (программы), воспринимаемых компьютером.

Синтаксис языка программирования – это перечень правил
записи программ из элементов этого языка.

Программирование – это технология разработки программ с
помощью языков программирования.

 ࢀࡱࡺ.࡯࡮࡭࢒ࢇࢉ࢙ࢇࡼ .1.2.1

Одним из современных широко распространённых языков про-
граммирования является Паскаль. Он был создан на рубеже 1960–
70-х годов швейцарским учёным Никлаусом Виртом и первоначально
предназначался для обучения программированию. В настоящее
время данный язык используется и для профессиональной разра-
ботки малых и средних компьютерных систем.

14

Язык ܲܽܶܧܰ.ܥܤܣ݈ܽܿݏ включает в себя практически весь стан-
дартный язык Паскаль, а также большинство языковых расширений

языка ݄݅݌݈݁ܦ. Однако этих средств недостаточно для современного

программирования. Именно поэтому ܲܽܶܧܰ.ܥܤܣ݈ܽܿݏ расширен ря-
дом конструкций, а его стандартный модуль - рядом подпрограмм, ти-
пов и классов, что позволяет создавать легко читающиеся приложе-
ния средней сложности.

Кроме этого, язык ܲܽܶܧܰ.ܥܤܣ݈ܽܿݏ использует большинство

средств, предоставляемых платформой 	. -единая система ти :ܶܧܰ
пов, классы, интерфейсы, исключения, делегаты, перегрузка опера-

ций, обобщённые типы (݃݁݊݁ݏܿ݅ݎ), методы расширения, лямбда-вы-
ражения.

Стандартный модуль ܲ݉݁ݐݏݕܵܥܤܣ, автоматически подключае-
мый к любой программе, содержит огромное количество стандартных
типов и подпрограмм, позволяющих писать ясные и компактные про-
граммы.

В распоряжении ܲܽܶܧܰ.ܥܤܣ݈ܽܿݏ находятся все средства . -ܶܧܰ
библиотек классов, постоянно расширяющихся самыми современ-
ными возможностями. Это позволяет легко писать на	ܲܽܶܧܰ.ܥܤܣ݈ܽܿݏ

приложения для работы с сетью, ܹܾ݁, ܺܮܯ-документами, использо-
вать регулярные выражения и многое другое.

Язык ܲܽܶܧܰ.ܥܤܣ݈ܽܿݏ позволяет программировать в классиче-
ском процедурном стиле, в объектно-ориентированном стиле и со-
держит множество элементов для программирования в функциональ-
ном стиле. Выбор стиля или комбинации этих стилей - дело вкуса
программиста, а при использовании в обучении - методический под-
ход преподавателя.

Сочетание богатых и современных языковых средств, возмож-
ностей выбора разных траекторий обучения позволяет рекомендо-

вать ܲܽܶܧܰ.ܥܤܣ݈ܽܿݏ, с одной стороны, как язык для обучения про-
граммированию (от школьников до студентов младших и средних кур-
сов), с другой - как язык для создания проектов и библиотек средней
сложности.

15

 ࢔࢕࢏࢚ࢇࢉ࢏࢒࢖࢖࡭	࢘࢕ࢌ	ࢉ࢏࢙ࢇ࡮	࢒ࢇ࢛࢙࢏ࢂ .1.2.2

Несмотря на новизну языка ܸ݈݅ܽݑݏ	ܿ݅ݏܽܤ	ݎ݋݂	ݏ݊݋݅ݐ݈ܽܿ݅݌݌ܣ, исто-
рия его появления почти так же стара, как и вся компьютерная про-
мышленность. Про язык ܸܣܤ можно сказать, что он является диалек-
том языка BASIC, который появился в начале 60-х.

Хотя по современным понятиям язык ܥܫܵܣܤ был довольно огра-
ниченным и, как теперь говорят, варварским, он был прост для изу-
чения и очень скоро получил широкое распространение. Версии

языка ܥܫܵܣܤ выпускались для всех типов компьютеров. Язык

 был одним из первых ݐ݂݋ݏ݋ݎܿ݅ܯ производства компании ܥܫܵܣܤܹܩ
языков программирования для современных персональных компью-

теров. Он поставлялся со всеми операционными системами ܵܯ	ܱܵܦ
до 5-й версии. Ранние персональные компьютеры производства ком-

пании ܯܤܫ даже имели версию ܥܫܵܣܤ, встроенную в ПЗУ.

С годами первоначальная версия ܥܫܵܣܤ была существенно до-
работана. Менялась технология программирования, и вместе с ней
под влиянием разработчиков программного обеспечения менялся

сам ܥܫܵܣܤ. Современный его диалект включает многие черты и свой-
ства, характерные для более поздних и совершенных языков, таких

как ܲܽܥ ,݈ܽܿݏ и ܥ ൅ ൅.

В конце 80-х ݐ݂݋ݏ݋ݎܿ݅ܯ выпускает существенно улучшенную

версию ܥܫܵܣܤ, названную ܳܥܫܵܣܤ݇ܿ݅ݑ во всех версиях ܵܯ	ܱܵܦ, начи-

ная с 6-й (но не ܹ݅݊݀ݏݓ݋	95).

После нескольких версий ܳܿ݅ݏܽܤ݇ܿ݅ݑ в 1992 году ݐ݂݋ݏ݋ݎܿ݅ܯ вы-

пускает ܸ݈݅ܽݑݏ	ܿ݅ݏܽܤ	ݎ݋݂	ݏݓ݋ܹ݀݊݅. Язык VBA в основном совпадает с

-но имеет и существенное отличие. В част ,ݏݓ݋ܹ݀݊݅	ݎ݋݂	ܿ݅ݏܽܤ	݈ܽݑݏܸ݅

ности, макросы ܸܣܤ хранятся в файле документа того приложения, в
котором вы создаёте этот макрос.

Внедрив один язык макросов во все свои приложения, ݐ݂݋ݏ݋ݎܿ݅ܯ
гарантирует, что большая часть того, что вы выучите о ܸܣܤ примени-
тельно к одному приложению, будет справедлива и для остальных.

 мощный язык программирования, инструмент, позволяющий – ܣܤܸ

добраться до самых скрытых ресурсов ܵܯ	ܱ݂݂݅ܿ݁.

16

 ,это система программирования –	݊݋݅ݐ݈ܽܿ݅݌݌ܣ	ݎ݋݂	ܿ݅ݏܽܤ	݈ܽݑݏܸ݅
которая используется как единое средство программирования во
всех приложениях ݐ݂݋ݏ݋ݎܿ݅ܯ	ܱ݂݂݅ܿ݁.

Программирование в ܵܯ	ܱ݂݂݅ܿ݁ – это прежде всего уменьшение
количества повторяющихся действий и ручной работы, которая для
этого требуется. Вот примеры некоторых типичных ситуаций:

 вам с определённой периодичностью приходится изготавли-
вать документы, очень похожие друг на друга: приказы, рас-
поряжения в бухгалтерию, договоры, отчёты и т.п. Часто ин-
формацию можно взять из базы данных – тогда применение
программирования может дать очень большой выигрыш во
времени. Иногда её приходится вводить вручную, но и тогда
автоматизация даст выигрыш и во времени, и в снижении ко-
личества ошибок;

 разновидность той же ситуации: одни и те же данные нужно
использовать несколько раз. Например, вы заключаете дого-
вор с заказчиком. Одни и те же данные (наименование, адрес,
расчётный счёт, номер договора, дата заключения, сумма и
т.п.) могут потребоваться во множестве документов: самом
договоре, счёте, счёте-фактуре, акте сдачи выполненных ра-
бот и так далее. Логично один раз ввести эти данные (скорее
всего, в базу данных), а затем автоматически формировать
(например, в редакторе 	ܹ݀ݎ݋) требуемые документы;

 когда нужно сделать так, чтобы вводимые пользователем
данные автоматически проверялись. Вероятность ошибки при
ручном вводе данных зависит от многих разных факторов, но,
согласно результатам некоторых исследований, она в сред-
нем составляет около двух процентов. "Вылавливать" потом
такие ошибки в уже введённых данных – очень тяжёлый труд,
поэтому лучше сразу сделать так, чтобы они не возникали.

В общем любое действие, которое вам приходится повторять
больше нескольких раз, – это возможный кандидат на автоматиза-
цию. Например, занесение сотен контактов в ܵܯ	݇݋݋݈ݐݑܱ, или замена
ресурса в десятках проектов ܵܯ	ݐ݆ܿ݁݋ݎܲ, или анализ информации из
базы данных за разные периоды в таблице ܵܯ	݈݁ܿݔܧ – те ситуации,

17

когда знание объектных моделей приложений ܵܯ	ܱ݂݂݅ܿ݁ спасёт вас
от часов и дней скучного труда.

Конечно, есть ещё практиканты и аналогичный бесплатный тру-
довой ресурс. Но хочется ли вам потом заниматься ещё и поиском
ошибок за них? Кроме того, применение программирования несёт
ещё и другие преимущества для сотрудника, который применяет его
в работе:

 повышается его авторитет в глазах руководства и других со-
трудников;

 если программы этого пользователя активно используются на
предприятии (им самим или другими сотрудниками), то этим
самым он защищает себя от сокращений, снижения зарплаты
и т.п. – ведь поддерживать их и изменять в случае необходи-
мости будет некому.

В принципе, как это не удивительно, при программировании в

 Подойдет любой .ܣܤܸ можно вполне обойтись без языка ݂݂ܱ݁ܿ݅	ܵܯ

 ,ݐ݌݅ݎܿܵܤܸ ,ܿ݅ݏܽܤ	݈ܽݑݏܸ݅ совместимый язык, например, обычный-ܯܱܥ
ܥ ,ݐ݌݅ݎܿܵܬ ൅ ൅, ܽݒܽܬ ,݄݅݌݈݁ܦ и т.п. Можно использовать и . -совме -ܶܧܰ

стимые языки программирования – ܸ С и т.п. Все возможности ,ܶܧܰ.ܤ

объектных моделей приложений ܵܯ	ܱ݂݂݅ܿ݁ вполне можно будет ис-
пользовать. Например, если сохранить код, приведённый на рис. 2, в

файле с расширением ∗. и запустить его на выполнение, то будет ݏܾݒ

запущен ܵܯ	݀ݎ݋ܹ, в котором будет открыт новый документ и впеча-

тан текст: "Привет от ܸݐ݌݅ݎܿܵܤ" (рис. 3).

Рис. 2. Пример кода

18

Однако обычно ܸܣܤ – самый удобный язык для работы с прило-

жениями ܵܯ	ܱ݂݂݅ܿ݁.

Главная причина проста – язык ܸܣܤ встроен в приложения

-можно хранить внутри до ܣܤܸ Код на языке .(и не только) ݂݂ܱ݁ܿ݅	ܵܯ

кументов приложений ܵܯ	ܱ݂݂݅ܿ݁ – документах ܹ݀ݎ݋, книгах ݈݁ܿݔܧ,
презентациях ܲ и т.п. Конечно же, этот код можно запускать ݐ݊݅݋ܲݎ݁ݓ݋

оттуда на выполнение, поскольку среда выполнения кода ܸܣܤ (на
программистском сленге – хост) встроена внутрь этих приложений.

В настоящее время ܸܣܤ встроен:

 во все главные приложения ܵܯ	ݏݏ݁ܿܿܣ ,݈݁ܿݔܧ ,݀ݎ݋ܹ – ݂݂ܱ݁ܿ݅,
 ;݄ݐܽܲ݋݂݊ܫ ,݁݃ܽܲݐ݊݋ݎܨ ,݇݋݋݈ݐݑܱ ,ݐ݊݅݋ܲݎ݁ݓ݋ܲ

 в другие приложения ݐ݂݋ݏ݋ݎܿ݅ܯ, например, ܸ݅݋݅ݏ и
 ;ݐ݆ܿ݁݋ݎܲ	ݐ݂݋ݏ݋ݎܿ݅ܯ

 в более чем 100 приложений третьих фирм, например,
 .и т.п ܦܣܥ݋ݐݑܣ ,2000	݂݂ܱ݁ܿ݅	ݐ݂ܿ݁ݎ݁ܲ݀ݎ݋ܹ݈݁ݎ݋ܥ и ݓܽݎܦ݈݁ݎ݋ܥ

У ܸܣܤ есть также множество других преимуществ.

 универсальный язык. Освоив его, вы не только получите – ܣܤܸ

Рис. 3. MS Word 2013, запущенный из скрипта ࢝ࢊ࢘࢕. ࢙࢈࢜

19

ключ ко всем возможностям приложений ܵܯ	ܱ݂݂݅ܿ݁ и других, пере-
численных выше, но и будете готовы к тому, чтобы:

 создавать полноценные приложения на ܸ݈݅ܽݑݏ	ܿ݅ݏܽܤ (по-
скольку эти языки – близкие родственники);

 использовать все возможности языка ܸݐ݌݅ݎܿܵܤ (это – вообще
урезанный VBA). В результате в вашем распоряжении будут
универсальные средства для создания скриптов администри-
рования ܹ݅݊݀ݏݓ݋, для создания ܹܾ݁-страниц (ܸݐ݌݅ݎܿܵܤ в
 для ,ܲܵܣ для создания ܹܾ݁-приложений ,(ݎ݁ݎ݋݈݌ݔܧ	ݐ݁݊ݎ݁ݐ݊ܫ
применения в пакетах ܵܶܦ и заданиях на ܵܯ	ܮܳܵ	ݎ݁ݒݎ݁ܵ, для
создания серверных скриптов ݄ܿݔܧа݊݃݁	ܵ݁ݎ݁ݒݎ	и многое-мно-
гое другое.

 изначально был ориентирован на пользователей, а не на ܣܤܸ
профессиональных программистов (хотя профессионалы пользу-
ются им очень активно), поэтому создавать программы на нем можно

очень быстро и легко. Кроме того, в ܵܯ	ܱ݂݂݅ܿ݁ встроены мощные
средства, облегчающие работу пользователя: подсказки по объектам
и по синтаксису, макрорекордер и т.п.

При создании приложений на ܸ вам скорее всего не придётся ܣܤ
заботиться об установке и настройке специальной среды программи-
рования и наличии нужных библиотек на компьютере пользователя –

 .есть практически на любом компьютере ݂݂ܱ݁ܿ݅	ܵܯ

Несмотря на то, что часто приложения ܸܣܤ выполняются мед-
леннее, чем бы вам хотелось, они не ресурсоёмки и очень хорошо
работают, например, на сервере терминалов. Но, как правило, для
программ на ܸܣܤ особых требований по производительности нет, так
как для написания игр, драйверов, серверных продуктов они не ис-

пользуются. Чаще всего проблемы с производительностью ܸܣܤ-при-

ложений – это не проблемы ܸܣܤ, а проблемы баз данных, к которым

они обращаются. Если проблемы действительно в ܸܣܤ (обычно то-
гда, когда вам требуется сложная математика), то всегда есть воз-
можность написать важный код на ܥ ൅ ൅ и обращаться к нему как к

обычной библиотеке ܮܮܦ или встраиваемому приложению (݀݀ܣ െ (݊ܫ

для ܹݏݏ݁ܿܿܣ ,݈݁ܿݔܧ ,݀ݎ݋ и т.п.

20

Программы на ܸܣܤ по умолчанию не компилируются, поэтому
вносить в них исправления очень удобно. Не нужно разыскивать ис-
ходные коды и перекомпилировать программы.

В среде программистов-профессионалов считается, что самый

короткий путь «с нуля» (от программ типа «݈݀ݎ݋ܹ,݋݈݈݁ܪ» до профес-
сиональных программ, которые делаются под заказ) – именно через

связку ܵܯ	ܱ݂݂݅ܿ݁	 െ ܥ а не через , ܣܤܸ	 ൅ ൅, ܽݒܽܬ или ݄݅݌݈݁ܦ.

1.3. Технология создания программ

Современное программирование фактически является про-
мышленной технологией, с помощью которой создаются программы
и компьютерные системы. Труд этот чаще всего коллективный, хотя
не исключены некоторые успехи индивидуальных разработчиков.

Например, ܵܯ	ݏݓ݋ܹ݀݊݅ и ܵܯ	ܱ݂݂݅ܿ݁ – это результат работы несколь-
ких сотен профессиональных программистов, аналитиков, проекти-

ровщиков, менеджеров и дизайнеров фирмы ݐ݂݋ݏ݋ݎܿ݅ܯ (США), в то

время как архиватор ܹܴܴ݅݊ܣ реализовал индивидуальный разработ-
чик Евгений Рошал (Россия).

Схематически технология создания программ проходит следу-
ющий ряд этапов:

а) постановка задачи, в рамках которой в общем виде описыва-
ются предполагаемые возможности программы;

б) проектирование программы - разработка структуры, интер-
фейса и детализированных возможностей будущей программы
(вплоть до описания конкретных алгоритмов) [3]; в процессе проекти-
рования реализуется разбиение программы на независимые подпро-
граммы т. е. на функциональные фрагменты, представляющие собой
некоторые макрокоманды типа «отредактировать файл», «отправить
файл по электронной почте», «найти фрагмент» и т. п.;

в) программирование – задания на разработку подпрограмм вы-
даются программистам, которые реализуют описанные алгоритмы на
языке программирования;

г) отладка и тестирование программ – это обязательный этап,
позволяющий выяснить, делает ли программа (подпрограмма) то, на

21

что она рассчитана, и насколько надёжно она это делает; следует от-
метить, что важным этапом тестирования является проверка того, как
данная подпрограмма работает совместно с другими подпрограм-
мами, входящими в один проект.

В заключение следует отметить, что каждая программа имеет
свой жизненный цикл, который тем больше, чем больше у программы
возможностей по настройке и чем легче она модифицируется.
Именно поэтому сейчас становится все более популярной техноло-
гия, называемая ܱ݁ܿݎݑ݋ܵ݊݁݌, предполагающая предоставление
пользователям программы вместе с её кодом на языке программиро-
вания высокого уровня.

Всякая система программирования включает в себя по мень-
шей мере три составные части:

1. Язык (или языки) программирования, т.е. набор правил, опре-
деляющих синтаксис (правила записи) и семантику (правила
выполнения) программ.

2. Среду программирования (разработки), т.е. набор инструмен-
тов для написания программ, редактирования, отладки и т.п.

3. Библиотеку (или библиотеки) стандартных программ, т.е.
набор готовых программ (процедур, функций, объектов и т.д.),
которые можно использовать как готовые элементы при по-
строении новых программ.

1.4. Системы и среды программирования

Изначально инструментарий программистов включал ряд
средств разработки, в которые, помимо языка программирования,
входили:

 специализированные или обычные текстовые редакторы, с
помощью которых писались тексты программ;

 трансляторы, которые проверяли правильность соблюдения
синтаксиса языка программирования и, если синтаксис не
нарушен, преобразовывали текст программы в машинный
код;

 специальные отладчики, которые позволяли, например, поко-
мандно выполнять программу и смотреть получаемые ре-
зультаты.

22

Сегодня подобными средствами никто не пользуется, поскольку
разработаны более удобные интегрированные инструментальные
среды, обеспечивающие выполнение полного комплекса взаимосвя-
занных работ по созданию программ. Фактически эти среды вклю-
чают в себя перечисленные выше компоненты. Более того, среды по-
стоянно совершенствуются и все более автоматизируют процесс со-
здания программ.

Можно отметить три поколения подобных сред. К первому поко-
лению относятся Турбо-среды, в которых фактически интегрированы
специализированный текстовый редактор, транслятор и отладчик.
Повышение производительности обеспечивалось тем, что в рамках
одной среды можно было заниматься подготовкой, трансляцией и от-
ладкой программ. К подобным средам можно отнести среды

 .и др ܥ	݋ܾݎݑܶ ,[1] 7.0	݈ܽܿݏܽܲ	݈݀݊ܽݎ݋ܤ

Второе поколение – это визуальные среды программирования.
Такие среды, помимо того, что обладают всеми возможностями
Турбо-сред, предоставляют разработчику огромное количество гото-
вых фрагментов программ. Эти фрагменты сгруппированы в различ-
ные подменю в виде отдельных пиктограмм (иконок), и их включение
в программу разработчика реализуется перетаскиванием этой пикто-
граммы в нужное окно с помощью мыши. Подобный подход позволил
существенно увеличить скорость разработки программ, имеющих
стандартные интерфейсы (кнопки, окна, обработчики событий и т. п.).

К данному виду программного обеспечения можно отнести ݄݅݌݈݁ܦ
(язык программирования ܱܾ݆݁ܿݐ	݈ܽܿݏܽܲ), ݈݀݊ܽݎ݋ܤ	ܥ ൅ ൅	ݎ݈݁݀݅ݑܤ,
 .и др (ܽݒܽܬ язык) ݎ݈݁݀݅ݑܤܬ

И, наконец, ܧܵܣܥ-среды программирования, представляющие
собой просто конструкторы программ, в рамках которых либо вообще
не надо программировать (если не считать рисования каких-либо
схем взаимодействия готовых компонентов), либо программировать
лишь вид окон, обеспечивающих интерфейс готовой системы. Подоб-
ные среды обладают максимальной на сегодняшний день автомати-
зацией проектирования и реализации программ и позволяют наибо-
лее быстро создавать различные специализированные информаци-
онные системы. Среди подобных средств можно

23

назвать		ܸܽ݊݁݃ܽݐ	݉ܽ݁ܶ	ݎ݈݁݀݅ݑܤ	ݐ݊ݑ݋݉ݐݏܹ݁)	ܫ െ /ሻݎ݁݊݃݅ݏ݁ܦ	ሺ		,(ܧܵܣܥ
	݊݅ݓݎܧ ,		2000 ൅ .Аналитик.ܧܵܣܥ и ݊݅ݓܲܤ	

Контрольные вопросы к главе 1

1. Что такое «программа»?
2. В программе на машинном языке (см. табл. 1) выполняются

операции с двумя операндами. А куда записывается резуль-
тат?

3. Чем отличается машинный язык от языка высокого уровня?
4. Предположим, что в программе, описанной в табл. 1, потребу-

ется найти среднее арифметическое не четырёх, а пяти чисел,
причём пятое число будет храниться в блоке памяти по адресу
01010101. Как изменится текст программы?

5. В чем назначение транслятора? Чем отличается компилятор
от интерпретатора?

6. Что такое язык программирования? Синтаксис языка програм-
мирования?

7. Какие этапы включает в себя технология создания программ?
8. В чем особенность Турбо-сред?
9. Чем визуальные среды программирования отличаются от

Турбо-сред?

10. Каковы особенности работы в ܧܵܣܥ-средах?
11. Кто разработал архиватор WinRAR?
12. Какой путь в изучении языков программирования в среде про-

фессиональных программистов считается наиболее приемле-
мым?

13. Для чего служит модуль ܲ݉݁ݐݏݕܵܥܤܣ?
14. Какие компоненты необходимы для создания полноценной вы-

полняемой программы на компьютере?
15. Каковы этапы технологии создания компьютерной программы?

24

Глава 2. СРЕДА РАЗРАБОТКИ

2.1. Среда разработки ࢀࡱࡺ.࡯࡮࡭࢒ࢇࢉ࢙ࢇࡼ

Интегрированная среда разработки ܲܽܶܧܰ.ܥܤܣ݈ܽܿݏ ориентиро-
вана на создание проектов малой и средней сложности. Она доста-
точно легковесна и в то же время обеспечивает разработчика всеми
необходимыми средствами, такими как встроенный отладчик, сред-

ства ݁ݏ݊݁ݏ݈݈݅݁ݐ݊ܫ (подсказка по точке, подсказка по параметрам,
всплывающая подсказка по имени), переход к определению и реали-
зации подпрограммы, шаблоны кода, автоформатирование кода.

В среду ܲܽܶܧܰ.ܥܤܣ݈ܽܿݏ встроен также дизайнер форм, позво-

ляющий создавать полноценные оконные приложения в стиле ܴܦܣ

 .(быстрое создание приложений - ݐ݊݁݉݌݋݈݁ݒ݁ܦ	݊݋݅ݐ݈ܽܿ݅݌݌ܣ	݀݅݌ܴܽ)

В отличие от многих профессиональных сред, среда разработки

-не имеет громоздкого интерфейса и не создаёт мно ܶܧܰ.ܥܤܣ݈ܽܿݏܽܲ
жество дополнительных вспомогательных файлов на диске при ком-
пиляции программы. Для небольших программ это позволяет соблю-
сти принцип - «Одна программа - один файл на диске».

В среде ܲ -большое внимание уделено связи запу ܶܧܰ.ܥܤܣ݈ܽܿݏܽ
щенной программы с оболочкой: консольная программа, запущенная
из-под оболочки, осуществляет ввод-вывод в специальное окно,
встроенное в оболочку. Можно также запустить несколько программ
одновременно - все они будут контролироваться оболочкой.

Интегрированная среда ܲ позволяет переключать ܶܧܰ.ܥܤܣ݈ܽܿݏܽ
в настройках русский и английский язык, при этом локализованы не
только элементы интерфейса, но и сообщения об ошибках.

Кроме этого, внутренние представления ܲܽܶܧܰ.ܥܤܣ݈ܽܿݏ позво-
ляют создавать компиляторы других языков программирования и
встраивать их в среду разработки с помощью специальных плагинов.

Скачать установочный файл ܲܽ݌ݑݐ݁ܵݐ݁ܰݐ݋ܦ݄ݐܹ݅ܶܧܰܥܤܣ݈ܽܿݏ. ݁ݔ݁
можно с сайта PascalABC.NET. Современное программирование

на языке ࢒ࢇࢉ࢙ࢇࡼ по адресу: http://pascalabc.net.

25

После установки среды разработки для начала написания и за-
пуска программ на Паскаль необходимо сделать ещё пару подгото-
вительных шагов.

Шаг 1. Подготовка рабочей папки для хранения файлов с раз-
работанными программами. Определитесь с расположением рабо-
чей папки (спросить у администратора или преподавателя, по умол-
чанию имя такой папки может быть ܵݐ݊݁݀ݑݐ). Если таковой нет, со-
здайте её.

В папке ܵݐ݊݁݀ݑݐ создайте папку ݈ܲܽܽܿݏ, а в ней – папку с вашей
фамилией.

Далее эту папку будем называть «Вашей папкой».

В этой папке создайте следующие папки:

-для хранения исходных кодов разрабатываемых про – ݃݋ݎܲ
грамм;

 ;для файлов с исходными данными – ݐݑ݌݊ܫ

 для откомпилированных файлов разрабатываемых – ݐݑ݌ݐݑܱ
программ.

Шаг 2. Инсталлировать установочный файл среды разработки
 При установке будет задан вопрос о пути к папке с .ܶܧܰ.ܥܤܣ݈ܽܿݏܽܲ
исходными кодами, указать путь к папке ܲ݃݋ݎ.

По окончании установки будет сгенерирована папка
-и на рабочем столе появится иконка с тем же име ܶܧܰ.ܥܤܣ݈ܽܿݏܽܲ
нем.

Шаг 3. После окончания установки (шаг 2) запустите среду раз-
работки (нажать на иконку ܲܽܶܧܰ.ܥܤܣ݈ܽܿݏ или Пуск → Программы
→ PascalABC.NET → PascalABC.NET) (рис. 4).

Введём несколько определений, которые будем использовать в
данном пособии.

Консольные приложения – это программы, в которых диалог ор-
ганизуется с помощью клавиатуры в специальном консольном окне
(на рис. 4 это окно названо просто консолью). Окно может быть еди-
ным для операций ввода и вывода или делится на две части. В нашем
случае реализован последний вариант.

26

Графические приложения – это программы, выполняемые в от-
дельных окнах, в которых строятся различные изображения. в том
числе и диалоговые окна, в которых диалог реализуется как с помо-
щью мыши, так и с помощью клавиатуры.

Лист, на котором размещается программа, будем называть
страницей.

Большую часть рабочей области, её верхнюю часть (рис. 5), за-
нимает окно редактора кода. В него вводится исходный текст про-
граммы.

Горячие клавиши, которые можно использовать при работе с
текстом программы:

݈ݎݐܥ ൅ ܵ- сохранить файл;

݈ݎݐܥ ൅ ܱ- загрузить файл;

 ;сохранить файл под новым именем -12ܨ

݈ݎݐܥ ൅ ݐ݂݄݅ܵ ൅ ܵ- сохранить все открытые файлы;

݈ݎݐܥ ൅ ܾܶܽ, ݈ݎݐܥ ൅ ݐ݂݄݅ܵ ൅ ܾܶܽ - перейти к следующему / преды-
дущему окну редактора;

Рис. 4. Основное окно среды разработки PascalABC.NET

27

݈ݎݐܥ ൅ ݐ݂݄݅ܵ ൅ ;увеличить отступ выделенного блока -ܫ

݈ݎݐܥ ൅ ݐ݂݄݅ܵ ൅ ܷ	- уменьшить отступ выделенного блока.

Под окном редактора расположено окно вывода. Оно предна-

значено для вывода данных процедурами ݁ݐ݅ݎݓ и ݈݊݁ݐ݅ݎݓ, а также для
вывода сообщений об ошибках и предупреждений во время работы
программы.

Окно вывода может быть скрыто (рис. 6). Клавиша ࡲ૞ показы-
вает/скрывает окно вывода. Для скрытия окна вывода используется

также клавиша ࢉ࢙ࡱ.

Рис. 5. Основные блоки среды разработки PascalABC.NET

Рис. 6. Консольная часть

28

Окно вывода обязательно открывается при любом выводе в
него.

Для очистки окна вывода следует нажать комбинацию клавиш

࢒࢚࢘࡯ ൅ .࢒ࢋࡰ
Окно ввода открывается при выполнении процедур ݀ܽ݁ݎ и

 .в ходе работы программы ݈݊݀ܽ݁ݎ
Ввод данных в окно ввода сопровождается эхо-выводом в окно

вывода (рис. 7). После нажатия клавиши ࢘ࢋ࢚࢔ࡱ данные из окна ввода
попадают в соответствующие переменные, окно ввода закрывается,
и программа продолжает работать дальше.

Среда разработки ࢀࡱࡺ.࡯࡮࡭࢒ࢇࢉ࢙ࢇࡼ проста в использовании. До-
полнительные сведения о ней рассмотрим в процессе разработки
программ.

2.2 Применение макрорекордера

2.2.1. Макрорекордер в ࢊ࢘࢕ࢃ и ࢒ࢋࢉ࢞ࡱ: запуск, приемы работы,

возможности

В большинстве программ ݐ݂݋ݏ݋ݎܿ݅ܯ	ܱ݂݂݅ܿ݁, таких как ݈݁ܿݔܧ,
 и т.п., встроено замечательное средство, которое ݐ݊݅݋ܲݎ݁ݓ݋ܲ ,݀ݎ݋ܹ
позволяет создавать программы, вообще ничего не зная о програм-
мировании. Это средство называется макрорекордером.

Макрорекордер, как понятно из его названия, – средство для за-

писи макросов. Макрос – всего лишь ещё одно название для ܸܣܤ-
программы, а макрорекордер – средство для его автоматического со-
здания.

Рис. 7. Окно вывода и ввода

29

Принцип работы макрорекордера больше всего похож на прин-
цип работы магнитофона: мы нажимаем на кнопку – начинается за-
пись тех действий, которые мы выполняем. Мы нажимаем на вторую
кнопку – запись останавливается, и мы можем её проиграть (то есть
повторно выполнить ту же последовательность действий).

Конечно, макрорекордер позволяет написать только самые про-

стые ܸܣܤ-программы. Однако и он может принести много пользы.
Например, можно «положить» на горячие клавиши те слова, словосо-
четания, варианты оформления и т.п., которые вам часто приходится
вводить (должность, название фирмы, продукт, ФИО директора и от-
ветственного исполнителя и т.п.) – этим вы сэкономите много вре-
мени.

Как показывает опыт, подавляющее большинство обычных
пользователей и не подозревает о существовании макрорекордера
несмотря на то, что его применение позволило бы сэкономить им
много времени.

Перед созданием макроса в макрорекордере:

 тщательно спланируйте макрос, хорошо продумав, что необ-
ходимо делать и в какой последовательности. Если есть воз-
можность, продумайте подготовительные действия. Напри-
мер, если нужно вставлять текущую дату в начало документа,
то, может быть, есть смысл первой командой макроса сде-

лать переход на начало документа ሺ࢒࢚࢘࡯ ൅ ;(ࢋ࢓࢕ࡴ	

 посмотрите, нет ли готовой команды, которую можно сразу
назначить клавише или кнопке в панели инструментов без из-
готовления макроса. Посмотреть можно при помощи меню

Файл → Параметры → Настроить ленту;

 если собираетесь при помощи макроса менять оформление
текста, то правильнее вначале создать новый стиль с вашим
оформлением, а потом уже применять этот стиль к тексту. В
этом случае опять-таки можно обойтись без макроса, просто
назначив стиль комбинации клавиш.

Создать макрос в макрорекордере можно в тех программах

 ,для которых такое средство предусмотрено, например ,݂݂ܱ݁ܿ݅	ܵܯ

 .(ݐ݆ܿ݁݋ݎܲ ,ݐ݊݅݋ܲݎ݁ݓ݋ܲ ,݈݁ܿݔܧ

30

На вкладке Разработчик1 выберите команду Запись макроса.
В открывшемся окне потребуется определить:

 Имя макроса. Оно не должно начинаться с цифры, содержать
пробелов и символов пунктуации. Максимальная длина

имени макроса в 64 – ݈݁ܿݔܧ символа, в Word – 80 символов.
Можно использовать русский язык.

 Будет ли макрос назначен кнопке на панели управления или
комбинации клавиш. Назначить макрос кнопке/комбинации
клавиш или использовать другие средства для его вызова
можно и потом – об этом будет рассказано в следующем раз-
деле.

 Где сохранить макрос. В ܹ݀ݎ݋ в вашем распоряжении теку-
щий файл и шаблон для всех вновь создаваемых документов

.݈ܽ݉ݎ݋݊ – ,в вашем распоряжении текущая книга ݈݁ܿݔܧ В .ݐ݋݀
возможность создать макрос одновременно с созданием но-

вой книги и личная книга макросов ݈ܽ݊݋ݏݎ݁݌. макросы из) ݏ݈ݔ
этой скрытой книги будут доступны в любых книгах). Подроб-
нее про то, где может храниться программный код, мы пого-
ворим в разделе про структуру проектов VBA (с. 80).

 Описание. Лучше заполнить – это подарок не только для дру-
гих, но и для себя (через несколько месяцев).

После нажатия на кнопку ܱܭ или назначения кнопки/клавиатур-
ной комбинации начнётся запись макроса. Указатель мыши при этом
примет вид магнитофонной кассеты и появится маленькая панель
Остановить запись. На ней всего две кнопки – Остановить за-
пись и Пауза. Если вы случайно закрыли эту панель, то остановить

запись можно через меню Разработчик → Остановить запись.
Самый простой способ запустить макрос, которому не назна-

чена кнопка или клавиатурная комбинация, – на вкладке Разработ-

чик выбрать Макросы (или нажать кнопку ݐ݈ܣ ൅ в списке выбрать ,(8ܨ
нужный макрос и нажать на кнопку Выполнить. Из этого же окна
можно просматривать/редактировать макросы, удалять/перемещать
их и т.п.

1 Активацию вкладки Разработчик см. в разделе 2.3.

31

Если макросов создано много, то получить список всех назначе-

ний клавиш (включая назначения для встроенных макросов ܹ݀ݎ݋)

можно при помощи меню Разработчик → Макросы, затем в списке
Макросы из выбрать Команды Word и выбрать в списке Имя ко-

манду ݐݏ݅ܮ	ݏ݀݊ܽ݉݉݋ܥ. Нажать Выполнить (рис. 8). В ответ на при-
глашение нужно выбрать Текущие настройки клавиатуры (иначе

будет выведен полный список команд ܹ݀ݎ݋ на 26 страниц). В ваш
документ будет вставлена таблица с текущими назначениями кла-
виш, которую можно распечатать.

Если у вас уже есть значительное количество созданных при

помощи макрорекордера макросов, то после освоения языка ܸܣܤ
есть смысл подумать над ними и, может быть, внести изменения.
Чаще всего есть смысл подумать над следующими моментами:

 если в вашем макросе повторяются какие-либо действия, то
возможно, есть смысл организовать цикл;

 может быть, есть смысл в ходе выполнения уточнить что-
либо у пользователя (при помощи ݐݑ݌݊ܫ	ݔ݋ܤ или элементов
управления);

Рис. 8. Окно Word 2013 Макросы

32

 чтобы в ходе выполнения макроса не возникало ошибок, то,
возможно, есть смысл реализовать в нем проверку текущих
условий.

Как все это сделать, будет рассказано в следующих главах.

И ещё один очень важный момент, связанный с макрорекорде-
ром. Помимо того, что он позволяет создавать простенькие про-
граммы, пригодные для самостоятельного использования безо вся-
ких доработок, макрорекордер – это ещё и ваш разведчик в мире объ-

ектных моделей приложений ܵܯ	ܱ݂݂݅ܿ݁. Опытные разработчики ча-
сто пользуются им для того, чтобы понять, какие объекты из огром-
ных объектных моделей приложений ܵܯ	ܱ݂݂݅ܿ݁ можно использовать
для выполнения тех или иных действий.

Конкретный пример: вам нужно автоматизировать создание

диаграмм в ݈݁ܿݔܧ. Поскольку в русской версии ݈݁ܿݔܧ для создания

диаграммы вручную вы используете команду Вставка → Диа-

грамма, то скорее всего, в справке по ܸܣܤ вы начнете в первую оче-

редь искать объект ݉ܽݎ݃ܽ݅ܦ. И вы его найдете – и скорее всего, по-
тратите определённое время на его изучение, прежде чем поймёте,

что это не та диаграмма! Объект ݉ܽݎ݃ܽ݅ܦ представляет то, что в рус-

ской версии ݈݁ܿݔܧ называется «Схематическая диаграмма» (до-
ступны из того же меню Вставка), а обычная диаграмма – это объект

 А вот если бы мы пустили вперед разведчика (то есть создали .ݐݎ݄ܽܥ
бы диаграмму с записью в макрорекордере и посмотрели бы создан-
ный код), он бы сразу указал нам нужное направление движения.

2.2.2. Запуск макроса после создания: диалоговые окна,
панели инструментов, меню и командная строка

Запустить на исполнение созданный макрос можно несколь-
кими способами. Самый простой, но и самый неудобный способ –
воспользоваться окном Макрос, которое можно открыть при помощи

меню Разработчик → Макросы (рис. 8).

Клавиши в этом окне в разных приложениях могут различаться,

однако основные клавиши остаются постоянными:
Выполнить – запустить макрос на выполнение;

33

Войти – открыть макрос в редакторе ܸ݈݅ܽݑݏ	ܿ݅ݏܽܤ и начать его
пошаговое выполнение;

Изменить – просто открыть макрос в редакторе ܸ݈݅ܽݑݏ	ܿ݅ݏܽܤ;
Создать – необходимо будет ввести имя создаваемого мак-

роса и в редакторе ࢒ࢇ࢛࢙࢏ࢂ	ࢉ࢏࢙ࢇ࡮ будет автоматически создана про-
цедура с определенным вами именем;

Удалить;
Параметры – поменять описание и назначенное сочетание

клавиш.
Каждый раз открывать это окно, находить нужный макрос (а их

вполне может быть, например, несколько десятков) и нажимать на
кнопку Выполнить – не самый быстрый вариант. Вряд ли он очень
понравится вашим пользователям, да и вам самим так работать бу-
дет неудобно. Поэтому в вашем распоряжении несколько более
удобных вариантов.

Если вы пользуетесь макросом постоянно, то можно использо-
вать самый быстрый способ его вызова – клавиатурную комбинацию.
Назначить сочетание клавиш макросу можно очень просто.

1. Рассмотрим назначение и удаление сочетаний клавиш при
помощи клавиатуры Word 2013.

Если необходимо, нажмите клавиши ࢀࡸ࡭ ൅ Ф,М чтобы открыть
диалоговое окно Параметры Word, и нажмите клавишу СТРЕЛКА
ВНИЗ для выбора пункта Настройка ленты.

Нажимайте клавишу TAB до тех пор, пока не будет выбран
пункт Настроить, затем нажмите клавишу ВВОД. Появится окно
настройки клавиатуры (рис. 9).

В поле Категории нажмите клавишу СТРЕЛКА ВНИЗ или
СТРЕЛКА ВВЕРХ, чтобы выделить категорию, содержащую команду
или иной элемент, для которого нужно назначить или удалить соче-
тание клавиш.

34

Нажмите клавишу TAB, чтобы перейти в поле Команды.

Нажмите клавишу СТРЕЛКА ВНИЗ или СТРЕЛКА ВВЕРХ,
чтобы выбрать имя команды или иного элемента, которому нужно
назначить или удалить сочетание клавиш.

Все сочетания клавиш, назначенные команде или элементу,
отображаются в поле Текущие сочетания.

Выполните одно из следующих действий:

а) Назначение сочетаний клавиш

Сочетание клавиш следует начинать с клавиши ࡸࡾࢀ࡯ или с
функциональной клавиши.

Нажимайте клавишу TAB до тех пор, пока курсор не перейдёт в
поле Новое сочетание клавиш.

Нажмите сочетание клавиш, которое требуется назначить.

Например, нажмите клавишу ࡸࡾࢀ࡯ и еще какую-либо клавишу.

Если сочетание клавиш уже назначено данной команде или дру-
гому элементу, то оно отображается в поле Текущее назначение.

Рис. 9. Окно Настройка клавиатуры

35

Если это сочетание клавиш уже назначено, то введите другое соче-
тание.

ВАЖНО: Изменение назначения сочетания клавиш делает невоз-
можным его использование по первоначальному назначе-

нию. Например, сочетание клавиш ࡸࡾࢀ࡯ ൅ используется ࡮
для оформления выделенного текста полужирным шриф-

том. Если назначить сочетание клавиш ࡸࡾࢀ࡯ ൅ -новой ко ࡮
манде или другому элементу, то применение к тексту полу-
жирного стиля при помощи данного сочетания клавиш ста-
нет невозможным до тех пор, пока не будет восстановлено
исходное назначение этого сочетания клавиш при помощи
команды Сброс.

Нажимайте клавишу TAB до тех пор, пока не будет выбрано
поле Сохранить изменения в.

Нажмите клавишу СТРЕЛКА ВНИЗ или СТРЕЛКА ВВЕРХ,
чтобы выделить название текущего документа, шаблона или мак-
роса, в котором нужно сохранить изменения сочетания клавиш, затем
нажмите клавишу ВВОД.

Нажимайте клавишу TAB до тех пор, пока не будет выбран
пункт Назначить, затем нажмите клавишу ВВОД.

ПРИМЕЧАНИЕ: Если компьютер оснащён программируемой клавиа-
турой, то нельзя назначать сочетание клавиш

ࡸࡾࢀ࡯ ൅ ࢀࡸ࡭ ൅ ૡ, поскольку оно зарезервированоࡲ
для перехода в режим программирования клавиа-
туры.

б) Удаление сочетаний клавиш

Нажимайте клавишу TAB до тех пор, пока не будет выбрано
поле Сохранить изменения в.

Нажмите клавишу СТРЕЛКА ВНИЗ или СТРЕЛКА ВВЕРХ,
чтобы выделить название текущего документа, шаблона или мак-
роса, в котором нужно сохранить изменения сочетания клавиш, затем
нажмите клавишу ВВОД.

36

Нажимайте сочетание клавиш ࢀࡲࡵࡴࡿ ൅ до тех пор, пока ࡮࡭ࢀ
курсор не окажется в поле Текущие сочетания.

Нажмите клавишу СТРЕЛКА ВНИЗ или СТРЕЛКА ВВЕРХ,
чтобы выбрать сочетание клавиш, которое требуется удалить.

Нажимайте клавишу TAB до тех пор, пока не будет выбран
пункт Удалить, затем нажмите клавишу ВВОД.

2. Назначение и удаление сочетаний клавиш при помощи кла-
виатуры Excel 2013.

В Excel назначение клавиш можно осуществить следующим об-
разом. Если макрос создаётся только при помощи макрорекордера

или вручную после выбора Разработчик → Запись макроса то по-
явится окно Запись макроса, где в поле Сочетание клавиш можно
ввести необходимое сочетание. Если при назначении клавиш уже су-

ществующему макросу после выбора Разработчик → Макросы по-
явится окно Макросы, то необходимо нажать клавишу Параметры

Рис. 10. Окно Макросы Excel 2013

37

(рис. 10) и далее в окне Параметры макроса в поле Сочетание кла-
виш ввести необходимую последовательность.

Как уже отмечалось, на клавиатурные комбинации есть смысл
назначать только те макросы, которыми вы пользуетесь каждый день.
А как же быть с полезными макросами, которые активно использу-
ются, к примеру, в отчётный период, а потом опять ждут своего часа
целый месяц? Подавляющее большинство пользователей за этот
месяц забудет все назначенные клавиши и потеряет те бумажки, на
которых им эти клавиатурные комбинации записали. Да и сам поль-
зователь вполне может забыть, что именно нужно нажимать для за-
пуска макроса.

Лучший выход в такой ситуации – назначить макрос пункту меню
или кнопке на панели быстрого доступа. Пожалуй, назначение пункту
меню даже лучше – больше возможностей упорядочить макросы и
есть возможность использовать понятные названия. Однако нажи-
мать на кнопки на панели быстрого доступа быстрее – так что выби-
райте сами, что вам больше нравится.

а) Создание кнопки на панели быстрого доступа

Щёлкните панель быстрого доступа правой кнопкой мыши и вы-
берите в контекстном меню команду Настройка панели быстрого
доступа.

В разделе Настройка панели быстрого доступа выберите в
списке Выбрать команды из пункта Макросы.

В списке "Настройка панели быстрого доступа" выберите
файл с именем текущего редактируемого документа. (Это необхо-

димо, чтобы приложение ܹ݀ݎ݋ или ݈݁ܿݔܧ (либо то в котором сейчас
работаете) сохранило кнопку на панели быстрого доступа в файле
документа. Если этого не сделать, при копировании файла на другой
компьютер кнопка отображаться не будет.)

Выберите созданный макрос и нажмите кнопку Добавить.

Нажмите кнопку Изменить, чтобы выбрать символ и изменить
имя на новое (если нужно).

38

б) Создание кнопки на ленте

Выбрать вкладку Файл → пункт Параметры → пункт Настроить
ленту.

В открывшемся окне справа, в списке "Настроить ленту", вы-
берите вкладку и группу, где будет помещена кнопка, или создайте
новые кнопки - Создать вкладку и Создать группу. Слева в этом же
окне в выпадающем списке "Выбрать команды" выбрать пункт
"Макросы".

Ниже, в списке, выбрать нужный макрос и нажать кнопку "Доба-
вить >>". Чтобы изменить иконку или название кнопки, группы,
вкладки, нажмите кнопку "Переименование...".

В подавляющем большинстве остальных приложений

 работа с макросами (.и т.п ݇݋݋݈ݐݑܱ ,ݐ݆ܿ݁݋ݎܲ ,ݐ݊݅݋ܲݎ݁ݓ݋ܲ) ݂݂ܱ݁ܿ݅	ܵܯ

производится так же, как и в ܹ݀ݎ݋.

Есть ещё один способ предоставить пользователю возмож-
ность запускать макросы – самый функциональный, но и самый тру-
доёмкий: создать специальную графическую форму, на которую
можно поместить, например, ниспадающий список макросов. При
применении этого способа можно предусмотреть дополнительные
элементы управления для ввода параметров, которые макросы смо-
гут «подхватывать» во время выполнения (напрямую параметры мак-
росам передаваться не могут, поскольку макрос – это процедура, не
принимающая параметров). Однако применение этого способа по-
требует написания программного кода. После этого создание такой
формы не составит никакого труда.

Есть ещё одна специальная возможность для запуска макросов:
сделать так, чтобы они запускались при возникновении специального
события. Таким событием может стать, например, внесение измене-

ний на лист ݈݁ܿݔܧ, открытие книги ݈݁ܿݔܧ или документа ܹ݀ݎ݋ и т.п.
Однако можно обеспечить автоматический запуск макроса и без про-
граммирования: достаточно просто назначить ему специальное имя.

Например, для ܹ݀ݎ݋ список таких специальных названий представ-
лен в табл. 2.

39

Таблица 2

Список специальных макросов для Word

Имя процедуры Когда запускается
AutoExec При запуске ܹ݀ݎ݋ (этот макрос дол-

жен храниться в ݈݊ܽ݉ݎ݋. (ݐ݋݀
AutoNew При создании нового документа
AutoOpen При открытии любого документа

(если в normal.dot) или открытии до-
кумента, в котором находится макрос
с таким именем

AutoClose При закрытии документа
AutoExit При выходе из ܹ݀ݎ݋

В ݈݁ܿݔܧ предусмотрены специальные имена макросов для рабо-

чей книги ݁ݐܽݒ݅ݐܿܣ_݋ݐݑܣ ,݁ݏ݋݈ܥ_݋ݐݑܣ ,݊݁݌ܱ_݋ݐݑܣ и ݁ݐܽݒ݅ݐܿܽ݁ܦ_݋ݐݑܣ. Од-

нако ݐ݂݋ݏ݋ݎܿ݅ܯ предупреждает, что эти возможности оставлены
только для обратной совместимости и рекомендует пользоваться со-
бытийными процедурами.

Ещё один момент, связанный с макросами ݋ݐݑܣ: компания
Microsoft объявила, что макросы такого типа теперь отключены по
умолчанию (начиная с версии MS Office 2003), чтобы защитить поль-
зователей от вредоносных документов из соображений безопасно-
сти. Для того, чтобы обеспечить им возможность запуска, необхо-

димо изменить установленный уровень безопасности: Файл → Пара-

метры → Центр управления безопасностью справа нажать кнопку
"Параметры центра управления безопасностью…". В открыв-
шемся окне Центр управления безопасностью справа выбрать необ-
ходимый уровень безопасности (например, Включить все макросы)

Ну и последняя, самая малоизвестная, но тем не менее очень
полезная возможность для запуска макросов. Вы можете запустить

их из командной строки при запуске ܹ݀ݎ݋ или ݈݁ܿݔܧ, указав имя мак-
роса в качестве параметра командной строки. Например, чтобы от-

крыть ܹ݀ݎ݋ и сразу выполнить макрос ݏ݋ݎܿܽܯݕܯ из ݈݊ܽ݉ݎ݋. ,ݐ݋݀
можно воспользоваться командой:

winword.exe / mMyMacros

Очень удобно использовать эту возможность, если создать не-

сколько ярлыков для запуска приложения ܵܯ	ܱ݂݂݅ܿ݁, например, на

40

рабочем столе, изменить в них командную строку и использовать для
запуска приложения с одновременным запуском макросов.

2.3. Интегрированная среда разработки ࡭࡮ࢂ

Среда разработки ܸܣܤ называется интегрированной средой

разработки или ݀݁ݐܽݎ݃݁ݐ݊ܫ) ܧܦܫ	ݐ݊݁݉݌݋݈݁ݒ݁ܦ	ܣܤܸ .(ݐ݊݁݉݊݋ݎ݅ݒ݊ܧ	ܧܦܫ
– это набор инструментов разработки программного обеспечения, та-

ких как редактор	ܸ݈݅ܽݑݏ	݈ܽݑݏܸ݅) ܿ݅ݏܽܤ	ܿ݅ݏܽܤ	ݎ݋ݐ݅݀ܧ, -средства от ,(ܧܤܸ

ладки, средства управления проектом и т. д. ܸܧܤ – это окно, содер-
жащее меню, другие окна и элементы, которые применяются при со-

здании проектов ܸܣܤ. Все приложения, поддерживающие ܸܣܤ, рабо-

тают с одним ܧܦܫ. Таким образом, при переходе в другое основное
приложение не требуется много времени, чтобы научиться приме-

нять в нем ܸܣܤ (в представленном пособии рассматривается инте-

грированная среда разработки ܸܣܤ для ܵܯ	݈݁ܿݔܧ	2013).

Для вывода ܧܦܫ необходимо на ленте выбрать вкладку Разра-

ботчик и затем нажать клавишу ܸ݈݅ܽݑݏ	ܿ݅ݏܽܤ (рис. 11).

В том случае, если на ленте нет вкладки Разработчик необхо-

димо в окне Параметры ݈݁ܿݔܧ (Файл-Параметры-Настроить ленту) в

правой части (Основные вкладки) отметить строку Разработчик

(рис. 12).

Для перехода из окна основного приложения в редактор ܸܧܤ

достаточно нажать комбинацию клавиш ݐ݈ܣ ൅ .11ܨ

В русских версиях приложений ܵܯ	ܱ݂݂݅ܿ݁ для редактора

Рис. 11. Запуск VBA IDE в MS Excel 2013

41

 предусмотрен англоязычный интерфейс. Справка по ܿ݅ݏܽܤ	݈ܽݑݏܸ݅

языку ܸܣܤ и объектным моделям приложений ܵܯ	ܱ݂݂݅ܿ݁ – тоже

только на английском. К сожалению, русифицированных вариантов

не существует. Однако знание английского языка для того, чтобы пи-

сать программы в ܸܣܤ, не обязательно (хотя и очень полезно): про-

граммы вполне можно создавать, не зная английского.

Интерфейс ܸܧܤ составляют различные окна, панели инстру-

ментов и меню. Основными (открывающимися по умолчанию) явля-

ются три окна: окно проекта, окно свойств и окно редактирования

кода.

Назначение этих и некоторых других компонентов ܸܧܤ приве-

дено в табл 3. Вызвать на экран тот или иной компонент можно с по-

мощью меню View (Вид). Вид окна редактора ܸ݈݅ܽݑݏ	ܿ݅ݏܽܤ представ-

лен на рис. 13.

Рис. 12. Окно Параметры Excel

42

Таблица 3

Назначение компонентов VBE

Наименова-
ние окна

Команда View
(Вид)

Описание

1 2 3
Project (Про-

ект)
Project

Explorer (Окно
проекта)

Предназначено для отображения всех от-
крытых проектов, а также их составляющих:
модулей, форм и ссылок на другие проекты

Toolbox (Па-
нель элемен-

тов)

Toolbox (Па-
нель элемен-

тов)

Содержит элементы управления для кон-
струирования форм

UserForm Object (Объ-
ект)

Используется для создания форм путём раз-
мещения на них элементов управления

Code (Про-
грамма)

Code (Про-
грамма)

Предназначено для просмотра, написания и
редактирования программы на языке VBA.
Поскольку среда разработки является мно-
гооконной, то для каждого модуля проекта

можно открыть отдельное окно
Properties
(Свойства)

Properties
(Окно свойств)

Отображает свойства выделенных объектов.
В этом окне можно задавать новые значения
свойств формы и элементов управления

Object Browser
(Просмотр
объектов)

Object Browser
(Просмотр
объектов)

Отображает классы, свойства, методы, со-
бытия и константы различных библиотек

объектов. Используется для быстрого полу-
чения информации об объектах

Рис. 13. Основное окно среды разработки VBA

Окно
проекта

Окно
свойств

Окно редактирова-
ния кода

43

Продолжение табл. Таблица 3

1 2 3
Immediate
(Проверка)

Immediate (Окно
отладки)

Предназначено для быстрого выполнения
вводимых в него инструкций. В данном

окне также выводятся результаты выпол-
нения вводимых инструкций

Locals (Локаль-
ные перемен-

ные)

Locals (Окно ло-
кальных пере-

менных)

Автоматически показывает все перемен-
ные данной процедуры

Watches (Кон-
трольные зна-

чения)

Watches (Окно
контрольных
значений)

Применяется при отладке программ для
просмотра значений выражений

2.3.1. Окно ࢚ࢉࢋ࢐࢕࢘ࡼ (Окно проекта)

Окно ࢚ࢉࢋ࢐࢕࢘ࡼ (Проект), иногда его называют окно проводника
проектов, предназначено для быстрого получения информации о раз-
личных составляющих проекта. Такими составляющими являются

 .(Ссылки) ࢙ࢋࢉ࢔ࢋ࢘ࢋࢌࢋࡾ и (Модули) ࢙ࢋ࢒࢛ࢊ࢕ࡹ ,(Формы) ࢙࢓࢘࢕ࡲ

Окно проекта можно использовать также для быстрой навига-
ции по формам проекта и программному коду. Для этого необходимо

выбрать в контекстном меню соответственно команды ࢝ࢋ࢏ࢂ	࢚ࢉࢋ࢐࢈ࡻ
(Объект) или ࢝ࢋ࢏ࢂ	ࢋࢊ࢕࡯ (Программа) (рис. 14).

Окно Проводника проектов при первой активизации редак-

тора ܸ݈݅ܽݑݏ	ܿ݅ݏܽܤ обычно открыто. Если оно случайно было закрыто,
то вызвать его можно:

 нажав на клавиши ݈ݎݐܥ ൅ ܴ;

Рис. 14. Окно проекта

44

 нажав на кнопку ܲݐ݆ܿ݁݋ݎ	ݎ݁ݎ݋݈݌ݔܧ на панели ܵ݀ݎܽ݀݊ܽݐ;

 воспользовавшись меню ܸ݅݁ݓ	 → .ݎ݁ݎ݋݈݌ݔܧ	ݐ݆ܿ݁݋ݎܲ	

2.3.2. Окно ࢙ࢋ࢏࢚࢘ࢋ࢖࢕࢘ࡼ (Окно свойств)

Список свойств выделенного объекта выводится в окне

 ,Для того чтобы выделить объект .(рис. 15) (Свойства) ࢙ࢋ࢏࢚࢘ࢋ࢖࢕࢘ࡼ
необходимо с помощью окна проекта выбрать форму и перейти в ре-

жим конструктора, используя команду ࢝ࢋ࢏ࢂ	࢚ࢉࢋ࢐࢈ࡻ. Свойства объ-

екта можно упорядочить в алфавитном порядке (ࢉ࢏࢚ࢋ࢈ࢇࢎ࢖࢒࡭ (По ал-

фавиту)) или по категориям (ࢊࢋࢠ࢏࢘࢕ࢍࢋ࢚ࢇ࡯ (По категориям)), выбрав
соответствующую вкладку. Предусмотрена также возможность полу-
чения быстрой справки по какому-либо свойству объекта. Для этого
достаточно установить курсор на нужное свойство и нажать клавишу
 .1ܨ

2.3.3. Окно ࢚ࢉࢋ࢐࢈ࡻ	࢘ࢋ࢙࢝࢕࢘࡮ (Окно просмотра объектов)

Окно ࢚ࢉࢋ࢐࢈ࡻ	࢘ࢋ࢙࢝࢕࢘࡮ (Просмотр объектов) (рис. 16) предназна-
чено для просмотра объектов, доступных при создании программы.
Хотя на самом деле в этом окне просматриваются не объекты, а

Рис. 15. Окно свойств

45

структуры соответствующего класса объектов (более подробно поня-
тие объект, класс и другие понятия объектно-ориентированного про-
граммирования рассматриваются в дисциплине «Объектно-ориенти-
рованное программирование»). Окно просмотра объектов может ис-
пользоваться для поиска метода или свойства объекта.

Чтобы найти какое-либо свойство или метод, необходимо вы-
полнить следующую последовательность действий:

1. Откройте в редакторе ܸ݈݅ܽݑݏ	ܿ݅ݏܽܤ нужный модуль.

2. Нажмите на панели инструментов кнопку ࢚ࢉࢋ࢐࢈ࡻ	࢘ࢋ࢙࢝࢕࢘࡮
(Просмотр объектов).

3. Используя раскрывающийся список ࢚ࢉࢋ࢐࢕࢘ࡼ	– -Про) ࢟࢘ࢇ࢘࢈࢏ࡸ	
ект – Библиотека), расположенный в верхнем левом углу окна про-
смотра объектов, выберите нужную библиотеку.

4. Отметьте нужный объект в списке ࢙ࢋ࢙࢙ࢇ࢒࡯ (Классы).

5. Используя список ࢙࢘ࢋ࢈࢓ࢋࡹ	ࢌࡻ (Компонент), выберите подхо-
дящий метод или свойство.

Для получения сведений о выбранном классе, методе, событии

или свойстве нажмите кнопку ࢖࢒ࢋࡴ (Справка) в окне ࢚ࢉࢋ࢐࢈ࡻ	࢘ࢋ࢙࢝࢕࢘࡮
(Просмотр объектов).

Рис. 16. Окно просмотра объектов

46

2.3.4. Окно ࢋࢊ࢕࡯ (Окно редактора кода)

Окно ࢋࢊ࢕࡯ (Программа) представляет собой текстовый редак-
тор, предназначенный для написания и редактирования кода проце-
дур приложения. Это окно появляется на экране, например, при со-
здании нового модуля. Код внутри модуля организован в виде от-
дельных разделов для каждого объекта, программируемого в мо-
дуле. Переключение между разделами выполняется путём выбора
значений из списка ࢚ࢉࢋ࢐࢈ࡻ (Объект), который находится в левом
верхнем углу окна. Каждый раздел может содержать несколько про-
цедур, которые можно выбрать из списка ࢋ࢛࢘ࢊࢋࢉ࢕࢘ࡼ (Процедура) в
правом верхнем углу (на рис. 17 этот список раскрыт). В окне редак-
тора доступны два режима представления кода: просмотр отдельной
процедуры и всего модуля. Переключение режимов работы окна осу-
ществляется выбором одной из двух кнопок в нижнем левом углу
окна редактора кода (см. рис. 17).

В верхней части окна редактора кода находятся два списка.
Список слева – это список объектов. В нем вы можете выбрать объ-

Рис. 17. Окно редактора кода

Отдельная процедура

Все процедуры мо-

Список Object

Список Procedure

47

ект, к которому будет относиться ваш код. Если вы открыли про-

граммный код модуля, то здесь будет только пункт (݈ܽݎ݁݊݁ܩ). Другое
дело, если открыта форма – в этом списке вы сможете выбрать саму
форму или любой ее элемент управления и записать для него код.

Список справа – это список процедур/событий. В нем есть раз-

дел (ݏ݊݋݅ݐܽݎ݈ܽܿ݁ܦ) – объявления уровня всего модуля и список всех
процедур (макросов) для стандартного модуля или событий, если со-
здается код для формы. При выборе нужного события будет автома-
тически создана нужная процедура, обрабатывающая это событие.

В редакторе кода выполняется основная часть работы по про-
граммированию, поэтому знать приёмы работы с ним нужно очень хо-
рошо. Открыть окно редактора кода можно множеством способов:

 выбрать нужный элемент (в ܲݐ݆ܿ݁݋ݎ	ݎ݁ݎ݋݈݌ݔܧ, в дизайнере
форм и т.п.) и в контекстном меню выбрать ܸ݅݁ݓ	 → ;݁݀݋ܥ	

 нажать на кнопку 7ܨ;

 выбрать ܸ݅݁ݓ	 → ;из меню ݁݀݋ܥ	

 дважды щёлкнуть по объекту модуля в ܲݐ݆ܿ݁݋ݎ	ݎ݁ݎ݋݈݌ݔܧ (или
выделить его и нажать на кнопку ݎ݁ݐ݊ܧ).

Редактор программного кода – это, по сути, обычный текстовый
редактор, и в нем вы вполне можете вырезать и вставлять код, пере-
таскивать его, скопировать путём перетаскивания с нажатой клави-

шей ݈ݎݐܥ – в вашем распоряжении почти все те же возможности, что

и в редакторе ܹ -Однако он все-таки предназначен для специали .݀ݎ݋
зированной задачи – создания кода программы.

а) Интеллектуальные возможности редактора кода:

1. При написании кода пользователю предлагается список компо-
нентов, логически завершающих вводимую пользователем ин-
струкцию.

2. На экране автоматически отображаются сведения о процедурах,
функциях, свойствах и методах после набора их имени.

3. Автоматически проверяется синтаксис набранной строки кода
сразу после нажатия клавиши ࢘ࢋ࢚࢔ࡱ. В результате проверки вы-
полняется выделение определённых фрагментов текста:

48

 красным цветом – синтаксические ошибки;
 синим цветом – зарезервированные ключевые слова;
 зелёным цветом – комментарии.

4. Если курсор расположить на ключевом слове ܸܣܤ, имени проце-
дуры, функции, свойства или метода и нажать клавишу 1ܨ, то на
экране появится окно со справочной информацией об этой функ-
ции.

б) Применение закладок в редакторе VBA, линия разбивки

Иногда в процессе написания программного кода в одном месте
вам в голову приходит идея, относящаяся к другой части кода. Надо
бы перепрыгнуть в другое место, но разыскивать потом ту строку, где
была прервана работа, очень не хочется. В этом случае опытные про-
граммисты используют закладки. Закладка (как и в случае с обычной
книгой) – это метка, при помощи которой можно быстро найти нужное
место. Работа с закладками производится либо из панели инструмен-

тов ݐ݅݀ܧ (вначале панель нужно сделать видимой), либо через меню

	ݐ݅݀ܧ → ,Для того, чтобы включить или отключить закладку .݇ݎܽ݉݇݋݋ܤ	
нужно установить указатель ввода на нужную строку и воспользо-

ваться командой ݈ܶ݁݃݃݋	݇ݎܽ݉݇݋݋ܤ.

Часто бывает очень удобно разделить окно редактирования на
две части – для просмотра разных частей модуля, для копирования
и т.п. Делается это при помощи линии разбивки – маленького бегунка
сразу над полосой прокрутки.

2.3.5. Окно	࢓࢘࢕ࡲ࢘ࢋ࢙ࢁ	ሺОкно	редактирования	формሻ	

Рис. 18. Окно редактирования форм и панель инструментов Toolbox
(Панель элементов)

49

Для создания диалоговых окон разрабатываемых приложений

-используются формы. Редактор форм является одним из основ ܣܤܸ

ных средств визуального программирования. При добавлении

формы в проект (команда ࢚࢘ࢋ࢙࢔ࡵ	– – Вставить) ࢓࢘࢕ࡲ࢘ࢋ࢙ࢁ	

-на экран выводится незаполненная форма (рис. 18) с па ((࢓࢘࢕ࡲ࢘ࢋ࢙ࢁ

нелью инструментов ࢞࢕࢈࢒࢕࢕ࢀ (Панель элементов).

Используя панель инструментов ࢞࢕࢈࢒࢕࢕ࢀ (Панель элементов),

из незаполненной формы конструируется требуемое для приложения

диалоговое окно. Размеры формы и размещаемых на ней элементов

управления можно изменять. Также окно редактирования форм под-

держивает операции буфера обмена. Кроме того, команды меню

-автоматизируют и облегчают процесс выравнива (Формат) ࢚ࢇ࢓࢘࢕ࡲ

ния элементов управления как по их взаимному местоположению, так

и по размерам.

2.3.6. Окно ࢋ࢚ࢇ࢏ࢊࢋ࢓࢓ࡵ (Окно проверки)

Окно ࢋ࢚ࢇ࢏ࢊࢋ࢓࢓ࡵ (Проверка) позволяет ввести инструкцию и

выполнить её. При этом инструкция должна быть записана в одну

строку, директивы которой будут выполнены после нажатия клавиши

-Данное окно можно использовать для быстрой проверки дей .࢘ࢋ࢚࢔ࡱ

ствий, выполняемых той или иной инструкцией. Это позволяет не за-

пускать всю процедуру, что удобно при отладке программ.

2.3.7. Окно ࢙࢒ࢇࢉ࢕ࡸ (Окно локальных переменных)

Окно ࢙࢒ࢇࢉ࢕ࡸ (Локальные переменные) автоматически отобра-

жает все объявленные переменные текущей процедуры и их значе-

ния. Переменные других модулей, объявленные как Public и исполь-

зуемые в текущей процедуре, не отображаются.

2.3.8. Окно ࢙ࢋࢎࢉ࢚ࢇࢃ (Окно контрольных значений)

Окно ࢙ࢋࢎࢉ࢚ࢇࢃ (Контрольные значения) (рис. 19) применяется

при отладке программ для просмотра значений выражений. Окно

Watches представляет большую ценность – в это окно можно просто

50

"перетащить" нужную переменную или объект, и в этом окне будут

отражены все данные об имени переменной, её типе и текущем зна-

чении:

2.3.9. Отладчик ࢘ࢋࢍࢍ࢛࢈ࢋࡰ (пошаговая отладка кода)

После знакомства с отладкой кода при возникновении ошибки
работать с пошаговой отладкой будет проще.

Что такое вообще пошаговая отладка?

Это просмотр этапов выполнения кода строка за строкой.

Для чего это может быть нужно?

Чтобы проанализировать чужой код и понять более точно, что
он делает изнутри, а не только увидеть результат его выполнения.

Если вы начинающий программист и часто используете макро-
рекордер (записываете макросы), то пошаговая отладка поможет по-
нять, какое действия выполняет каждая строка. Это поможет быстрее
научиться понимать код и убирать из него лишнее, а также совме-
щать различные коды.

Если внутри кода есть ошибка логики выполнения, то это, пожа-
луй, самая сложная ошибка. При такой ситуации VBA не останавли-
вает работу и не говорит об ошибке. Код выполняется без ошибок, но
результат не такой, как ожидалось. Это может означать, что какой-то
переменной назначается не то значение, либо какое-то условие не-
верно, либо выполняется не в тот момент, в который должно. В об-
щем, по сути, это ошибка разработчика, не приводящая к ошибкам
синтаксиса или типов, которые VBA может отследить.

Рис. 19. Окно Watches

51

Как делать пошаговую отладку? Все просто: устанавливаете

курсор в любом месте внутри кода и нажимаете клавишу F8 (либо

выбрать в меню Degub-Step Into). Теперь при каждом нажатии кла-

виши F8 код будет выполнять одну строку кода за другой в той оче-

редности, в которой они расположены в процедуре. Если внутри про-

цедуры будет вызов второй процедуры или функции, то код пошагово

выполнит и её, а затем вернется в основную процедуру.

Можно привести еще сочетания клавиш, которые удобно приме-

нять при пошаговой отладке:

 Shift+F8 (Degub-Step Over) - выполнение вложенной функ-

ции/процедуры без захода в неё. Если внутри основной про-

цедуры или функции выполняется другая процедура или

функция и вы уверены, что она работает правильно, то про-

сматривать пошагово весь код вложенной процедуры/функ-

ции не имеет смысла. Чтобы вложенная процедура/функция

выполнилась без пошагового просмотра, надо просто нажать

указанное сочетание клавиш тогда, когда строка вызова вло-

женной процедуры/функции будет подсвечена желтым.

 Ctrl+Shift+F8 (Degub-Step Out) - завершение вложенной

функции/процедуры и выход в основную с остановкой. Если

все же перестарались и перешли в пошаговый проход вло-

женной функции (или сделали это специально, но посмотрели

все, что надо), то нажмите это сочетание, и код быстро вы-

полнит вложенную функцию, перейдет в основную и остано-

вится для дальнейшей пошаговой отладки.

 Ctrl+F8 (Degub-Run to Cursor) - выполнение процедуры до

строки, в которой на данный момент установлен курсор.

Часто бывает нужно не просто весь код пройти пошагово, а

начать пошаговое выполнение только с какой-либо одной строки,

чтобы не мотать множество строк кода (да еще с циклами) ради до-

стижения одной какой-то строки. Еще точки останова очень полезны

при отладке событийных процедур (вроде Worksheet_Change,

Worksheet_BeforeDoubleClick, событий элементов форм и т.п.) в

52

следствие того, что они в большинстве своем содержат аргументы, и

выполнить по F8 их просто невозможно. Выполняются они только при

наступлении самого события, которое они призваны обработать.

Тоже самое справедливо для функций пользователя (UDF) именно

для проверки их работы из листа ввиду того, что эти функции нельзя

начать выполнять по F5 – они начинают выполняться только после

их пересчета и зачастую ошибки можно выявить исключительно при

вызове именно с листа.

Чтобы дать понять VBA на какой строке нужно будет остано-

вится, необходимо установить курсор мыши в любое место нужной

строки и нажать F9 или Debug-Toggle Breakpoint. Строка будет вы-

делена темно-красным цветом.

Это называется установкой точки останова. Убрать точку

останова можно так же, как она была установлена – F9 или Debug-

Toggle Breakpoint. Также точку основа можно установить с помощью

мыши: для этого необходимо в области левее окна с кодом напротив

нужной строки один раз щелкнуть левой кнопкой мыши.

Теперь можно запустить код любым удобным способом (в от-

ладке это, как правило, делается клавишей F5 или с панели Run-Run

Sub/UserForm). Как только код дойдет до указанной точки останова,

он остановится, и строка будет подсвечена желтым. Дальше можно

либо продолжить выполнение в пошаговом режиме (нажимая F8),

либо (проверив значения нужных переменных и объектов) нажать

опять F5 и код продолжит выполняться автоматически, до тех пор,

пока не выполнится или не достигнет другой точки останова. Самих

же точек останова может быть сколько угодно и расположены они мо-

гут быть в любой процедуре или функции.

Следует помнить, что после закрытия файла с кодом точки

останова не сохраняются и при следующем открытии книги их необ-

ходимо будет установить заново, если это необходимо.

53

Контрольные вопросы к главе 2

1. Как запустить среду ࢀࡱࡺ.࡯࡮࡭࢒ࢇࢉ࢙ࢇࡼ?
2. Как создать новую страницу? Как открыть текст ранее создан-

ной программы?
3. Как закрыть текущую страницу с текстом программы? Можно

ли закрыть все неактивные страницы?
4. Пусть у вас открыто несколько программ. Как сделать активной

какую-либо из них?
5. Как исполнить программу, размещённую на какой-либо стра-

нице?
6. Что такое макрорекордер?
7. Как запустить макрорекордер?
8. Что такое макрос? Где его можно сохранить?
9. Какова процедура запуска макросов на выполнение?
10. Какие способы запуска макросов на выполнение вы знаете?

11. Как запустить ࡭࡮ࢂ	ࡱࡰࡵ?

12. Какие окна используются в ࡭࡮ࢂ	ࡱࡰࡵ?

13. Для чего нужно окно ࢚ࢉࢋ࢐࢕࢘ࡼ?

14. Что показывает окно ࢙ࢋ࢏࢚࢘ࢋ࢖࢕࢘ࡼ?
15. Как можно узнать вычисляемые значения локальных перемен-

ных?

16. Как в окне ݁ݐܽ݅݀݁݉݉ܫ произвести вычисления?

17. Что такое ࢓࢘࢕ࡲ࢘ࢋ࢙ࢁ?
18. Для чего используется Панель элементов?

54

Глава 3. ТИПЫ ДАННЫХ

Тип данных (встречается также термин «вид данных») – фун-

даментальное понятие теории программирования. Тип данных опре-

деляет множество значений, набор операций, которые можно приме-

нять к таким значениям и, возможно, способ реализации хранения

значений и выполнения операций. Любые данные, которыми опери-

руют программы, относятся к определённым типам [4].

Концепция типов данных является одной из центральных в лю-

бом языке программирования. С типом величины связаны три её

свойства: форма внутреннего представления, множество принимае-

мых значений и множество допустимых операций.

Понятие типа по Ч. Хоару2:

 Тип определяет класс значений, которые могут принимать пе-
ременная или выражение.

 Каждое значение принадлежит одному и только одному типу.
 Тип значения константы, переменной или выражения можно

вывести либо из контекста, либо из самого операнда, не об-
ращаясь к значениям, вычисляемым во время работы про-
граммы.

 Каждой операции соответствует некоторый фиксированный
тип её операндов и некоторый фиксированный (обычно такой
же) тип результата. Разрешение систематической неопреде-
лённости в случае, когда один и тот же символ применяется к
операндам разного типа, производится на стадии компиля-
ции.

 Для каждого типа свойства значений и элементарных опера-
ций над значениями задаются с помощью аксиом.

 При работе с языком программирования знание типа позво-
ляет обнаруживать бессмысленные конструкции и решать во-
прос о методе представления данных и преобразования их в
ЭВМ.

2 Сэр Чарльз Э́нтони Ри́чард Хо́ар (англ. Charles Antony Richard Hoare или Tony Hoare или C.A.R.
Hoare) родился 11 января 1934 в Коломбо, Цейлон, Британская империя, ныне Шри Ланка) —
английский учёный, специализирующийся в области информатики и вычислительной техники.
Наиболее известен как разработчик алгоритма «быстрой сортировки» (1960), на сегодняш-
ний день являющегося наиболее популярным алгоритмом сортировки.

55

Типы данных различаются, начиная с нижних уровней компью-
тера. Так, даже в Ассемблере х86 различаются типы «целое число»
и «вещественное число». Это объясняется тем, что для чисел рас-
сматриваемых типов отводятся различные объёмы памяти, исполь-
зуются различные регистры микропроцессора, а для операций с ними
применяются различные команды Ассемблера и различные ядра
микропроцессора.

Концепция типа данных появилась в языках программирования
высокого уровня как естественное отражение того факта, что обраба-
тываемые программой данные могут иметь различные множества до-
пустимых значений, храниться в памяти компьютера различным об-
разом, занимать различные объёмы памяти и обрабатываться с по-
мощью различных команд процессора.

Как правило, типы языков программирования не всегда строго
соответствуют подобным математическим типам. Например, тип «це-
лое число» большинства языков программирования не соответствует
принятому в математике типу «целое число», так как в математике
указанный тип не имеет ограничений ни сверху, ни снизу, а в языках
программирования эти ограничения есть. Как правило, в языках и си-
стемах имеется множество целых типов, отличающихся допустимым
диапазоном значений (определяемым объёмом занимаемой памяти).
Стоит отметить, что в большинстве реализаций языков и систем вы-
ход за границу целого типа (переполнение) не приводит к исключи-
тельной ситуации.

3.1. Языки без типов

Теоретически не может существовать языков, в которых отсут-
ствуют типы (включая полиморфные - представление набора типов
как единственного типа). Это следует из того, что все языки основаны
на машине Тьюринга или на лямбда-исчислении (см. [3], раздел 1.2).
И в том, и в другом случае необходимо оперировать как минимум од-
ним типом данных – хранящимся на ленте (машина Тьюринга) или
передаваемым и возвращаемым из функции (лямбда-исчисление).
Ниже перечислены языки программирования по способу определе-
ния типов данных:

56

1. Языки с полиморфным типом данных - не связывают пе-
ременные, константы, формальные параметры и возвращаемые зна-
чения функций с определёнными типами, поддерживая единствен-
ный полиморфный тип данных. В чистом виде таких языков не встре-

чается, но близкие примеры – ܸܣܤ – тип ݐ݊ܽ݅ݎܽݒ, Пролог, Лисп –
списки. В этих языках переменная может принимать значение любого
типа, в параметры функции можно передавать значения любых типов
и функция также может вернуть значение любого типа. Сопоставле-
ние типов значений переменных и параметров с применяемыми к ним
операциями производится непосредственно при выполнении этих

операций. Например, выражение ܽ ൅ ܾ может трактоваться как сло-

жение чисел, если ܽ и ܾ имеют числовые значения, как конкатенация

строк, если ܽ и ܾ имеют строковые значения, и как недопустимая

(ошибочная) операция, если типы значений ܽ и ܾ несовместимы. Та-
кой порядок называют «динамической типизацией» (соответствует
понятию полиморфизм в ООП, полиморфный тип в теории типов).
Языки, поддерживающие только динамическую типизацию, называют
иногда «бестиповыми». Это название не следует понимать, как
признак отсутствия понятия типов в языке – типы данных всё равно
есть.

2. Языки с неявным определением типов. Казалось бы,

-является примером языка без типов. Однако это строго типи ܥܫܵܣܤ
зированный язык: в нём различаются строковые типы (добавляется
символ, массивы (добавляется ሾ	ሿ) и числовые типы (ничего не добав-
ляется).

3. Языки с типом, определяемым пользователем. Также
хорошо известны языки, в которых типы данных определяются авто-
матически, а не задаются пользователем. Каждой переменной, пара-
метру, функции приписывается определённый тип данных. В этом
случае для любого выражения возможность его выполнения и тип по-
лученного значения могут быть определены без исполнения про-
граммы. Такой подход называют «статической типизацией». При
этом правила обращения с переменными, выражениями и парамет-

рами разных типов могут быть как очень строгими ܥ ൅ ൅, так и весьма

либеральными (ܥ). Например, в классическом языке Си практически

57

все типы данных совместимы – их можно применять совместно в лю-
бых выражениях, присваивать значение переменной одного типа пе-
ременной другого почти без ограничений. При таких операциях ком-
пилятор генерирует код, обеспечивающий преобразование типов, а
логическая корректность такого преобразования остаётся на совести
программиста. Подобные языки называют «языками со слабой типи-
зацией». Противоположность им – «языки с сильной типизацией»,
такие как Ада или Паскаль. В них каждая операция требует операн-
дов строго заданных типов. Никакие автоматические преобразования
типов не поддерживаются – их можно выполнить только явно, с по-
мощью соответствующих функций и операций. Сильная типизация
делает процесс программирования более сложным, но даёт в резуль-
тате программы, содержащие заметно меньше трудно обнаруживае-
мых ошибок.

На практике языки программирования поддерживают несколько
моделей определения типов одновременно.

3.2. Преимущества от использования типов данных

Надёжность. Типы данных защищают от трёх видов ошибок:

 Некорректное присваивание. Пусть переменная объявлена
как имеющая числовой тип. Тогда попытка присвоить ей сим-
вольное или какое-либо другое значение в случае статиче-
ской типизации приведёт к ошибке компиляции и не даст та-
кой программе запуститься. В случае динамической типиза-
ции код программы перед выполнением потенциально опас-
ного действия сравнит типы данных переменной и значения и
также выдаст ошибку. Всё это позволяет избежать непра-
вильной работы и «падения» программы.

 Некорректная операция. Позволяет избежать попыток при-
менения выражений вида «݋݈݈݁ܪ	݈݀ݎ݋ݓ»	 ൅ 	1. Поскольку, как
уже говорилось, все переменные в памяти хранятся как
наборы битов, то при отсутствии типов подобная операция
была бы выполнима (и могла дать результат вроде

-Ǽ»). С использованием типов такие ошибки отсе݈݀ݎ݋ݓ	݋݈݈݁»
каются опять же на этапе компиляции.

 Некорректная передача параметров. Если функция «синус»

58

ожидает, что ей будет передан числовой аргумент, то пере-
дача ей в качестве параметра строки «݋݈݈݁ܪ	݈݀ݎ݋ݓ» может
иметь непредсказуемые последствия. При помощи контроля
типов такие ошибки также отсекаются на этапе компиляции.

Стандартизация. Благодаря соглашениям о типах, поддержи-
ваемых большинством систем программирования, сложилась ситуа-
ция, когда программисты могут быстро менять свои рабочие инстру-
менты, а программы не требуют больших переделок при переносе
исходных текстов в другую среду. К сожалению, стандартизации по
универсальным типам данных ещё есть куда развиваться.

3.3. Контроль типов и системы типизации

Процесс проверки и накладывания ограничений типов – кон-
троля типов, может выполняться во время компилирования (статиче-
ская проверка) или во время выполнения (динамическая проверка):

 Статическая типизация – контроль типов осуществляется
при компиляции.

 Динамическая типизация – контроль типов осуществляется
во время выполнения.

Контроль типов также может быть строгим и слабым:

 Строгая типизация – совместимость типов автоматически
контролируется транслятором.

 Номинативная типизация (англ. ݊݁ݒ݅ݐܽ݊݅݉݋	݁݌ݕݐ	݉݁ݐݏݕݏ) –
совместимость должна быть явно указана (наследована) при
определении типа.

 Структурная типизация (англ. ݈ܽݎݑݐܿݑݎݐݏ	݁݌ݕݐ	݉݁ݐݏݕݏ) – сов-
местимость определяется структурой самого типа (типами
элементов, из которых построен составной тип).

 Слабая типизация – совместимость типов никак транслято-
ром не контролируется. В языках со слабой типизацией
обычно используется подход под названием «утиная типиза-
ция» – когда совместимость определяется и реализуется об-
щим интерфейсом доступа к данным типа.

59

3.4. Классификация типов данных

Каждый язык программирования поддерживает один или не-
сколько встроенных типов данных (базовых типов), кроме того, раз-
витые языки программирования предоставляют программисту воз-
можность описывать собственные типы данных, комбинируя или рас-
ширяя существующие.

3.4.1. Простые

Перечислимый тип. Может хранить только те значения, кото-

рые прямо указаны в его описании.

Числовые. Хранятся числа. Могут применяться обычные ариф-

метические операции.

Целочисленные: со знаком, то есть могут принимать как поло-

жительные, так и отрицательные значения; и без знака, то есть могут

принимать только неотрицательные значения.

Вещественные: с запятой (то есть хранятся знак и цифры це-

лой и дробной частей) и с плавающей запятой (то есть число приво-

дится к виду ݉ ൈ ܾ^݁, где ݉ – мантисса, ܾ – основание показательной

функции, ݁ – показатель степени (порядок) (в англоязычной литера-

туре экспонента), причём в нормальной форме 0 ൑ ݉ ൏ ܾ, а в норма-

лизованной форме 1 ൑ ݉ ൏ ܾ, ݁ – целое число и хранятся знак и

числа ݉ и ݁).

Числа произвольной точности, обращение с которыми проис-

ходит посредством длинной арифметики. Примером языка с встроен-

ной поддержкой таких типов является ܷܥܫܵܣܤ, часто применяемый в

криптографии.

Символьный тип. Хранит один символ. Могут использоваться

различные кодировки.

Логический тип. Имеет два значения: истина и ложь. Могут при-

меняться логические операции. Используется в операторах ветвле-

ния и циклах. В некоторых языках является подтипом числового типа,

при этом ложь = 0, истина = 1.

60

Множество. В основном совпадает с обычным математическим
понятием множества. Допустимы стандартные операции с множе-
ствами и проверка на принадлежность элемента множеству. В неко-
торых языках рассматривается как составной тип.

3.4.2. Составные (сложные)

Массив. Является индексированным набором элементов од-
ного типа. Одномерный массив – вектор, двумерный массив – мат-
рица.

Строковый тип. Хранит строку символов. Аналогом сложения
в строковой алгебре является конкатенация (прибавление одной
строки в конец другой строки). В языках, близких к бинарному пред-
ставлению данных, чаще рассматривается как массив символов, в
языках более высокой абстракции зачастую выделяется в качестве
простого.

Запись (структура). Набор различных элементов (полей за-
писи), хранимый как единое целое. Возможен доступ к отдельным по-
лям записи. Например, ݐܿݑݎݐݏ в ܥ или ݀ݎ݋ܿ݁ݎ в ݈ܲܽܽܿݏ.

Файловый тип. Хранит только однотипные значения, доступ к
которым осуществляется только последовательно (файл с произ-
вольным доступом, включённый в некоторые системы программиро-
вания, фактически является неявным массивом).

3.4.3. Класс

Другие типы данных. Если описанные выше типы данных пред-
ставляли какие-либо объекты реального мира, то рассматриваемые
здесь типы данных представляют объекты компьютерного мира, то
есть являются исключительно компьютерными терминами.

Указатель. Хранит адрес в памяти компьютера, указывающий
на какую-либо информацию, как правило, – указатель на перемен-
ную.

3.5. Типы данных в ࢀࡱࡺ.࡯࡮࡭࢒ࢇࢉ࢙ࢇࡼ

Типы в ܲܽܶܧܰ.ܥܤܣ݈ܽܿݏ подразделяются на простые, строковые,
структурированные, типы указателей, процедурные типы и классы.

61

К простым относятся целые и вещественные типы, логический,
символьный, перечислимый и диапазонный тип (табл. 4).

Таблица 4

Целочисленные типы данных PascalABC.NET

Целочисленный
тип

Диапазон значений Требуемая
память
(байт)

Integer -32 768 .. 32 767 2
ShortInt -128 .. 127 1
LongInt -2 147 483 648 .. 2 147 483 647 4

Byte 0 .. 255 1
Word 0 .. 65 535 2

К структурированным типам относятся массивы, записи, мно-
жества и файлы.

Все простые типы, кроме вещественного, называются порядко-
выми. Только значения этих типов могут быть индексами статических

массивов и параметрами цикла ݂ݎ݋. Кроме того, для порядковых ти-

пов используются функции ܱ݀݁ݎܲ ,݀ݎ и ܵܿܿݑ, а также процедуры ܿ݊ܫ и

 .ܿ݁ܦ

Все типы, кроме типов указателей, являются производными от

типа ܱܾ݆݁ܿݐ. Каждый тип в ܲܽܶܧܰ.ܥܤܣ݈ܽܿݏ имеет отображение на тип

. -Тип указателя принадлежит к неуправляемому коду и модели .ܶܧܰ

руется типом ݀݅݋ݒ ∗.

Все типы в ܲܽܶܧܰ.ܥܤܣ݈ܽܿݏ подразделяются на две большие
группы: размерные и ссылочные. К размерным относятся все про-
стые типы, указатели, записи, статические массивы, множества и
строки. К ссылочным типам относятся классы, динамические мас-
сивы, файлы и процедурный тип.

Размерные типы более эффективны при вычислениях: они за-
нимают меньше памяти и операции, выполняемые над небольшими
размерными типами, максимально эффективны. Ссылочные типы об-
ладают большей гибкостью: память под них выделяется динамически
в процессе работы программы и освобождается автоматически, когда
объект ссылочного типа перестаёт использоваться.

62

Выделение памяти

Память под переменную размерного типа распределяется на
программном стеке в момент её описания. При этом переменная раз-
мерного типа хранит значение этого типа.

var i: integer; здесь под i выделяется память

i := 5;

Переменная ссылочного типа представляет собой ссылку на
объект некоторого класса в динамической памяти. Если она не ини-
циализирована, то хранит специальное значение ݈݊݅ (нулевая
ссылка). Для инициализации ссылочных переменных используется
вызов конструктора соответствующего класса.

Пример 3.1.

type Person = auto class
 name: string;
 age: integer;
end;

var p: Person; ݌ хранит значение ݈݊݅, память
под объект не выделена

p := new Person('Иванов',20); конструктор выделяет память
под объект

Присваивание

При присваивании переменных размерного типа копируются
значения этого типа. Если размерный тип имеет большой размер, эта
операция может выполняться долго.

Пример 3.2.

var a,a1: array [1..1000000] of integer;
a1 := a; копируются все 1000000

элементов

При присваивании переменных ссылочного типа осуществля-
ется присваивание ссылок, в итоге после присваивания обе ссылки
ссылаются на один объект в динамической памяти.

Пример 3.3.

var p1: Person;
p1 := p; копируется ссылка

63

Сравнение на равенство

Сравнение на равенство объектов размерного типа сравнивает
их значения. В частности, две переменные типа запись равны, если
равны все поля этих записей.

Пример 3.4.

type PersonRec = record
 name: string;
 age: integer;
end;
var p,p1: PersonRec;
p.name := 'Иванов'; p.age := 20;
p1.name := 'Иванов'; p1.age := 20;

writeln(p1=p); True

При сравнении на равенство переменных ссылочного типа про-
веряется, что они ссылаются на один и тот же объект.

Пример 3.5.

var p := new Person('Иванов',20);
var p1 := new Person('Иванов',20);

writeln(p1=p); False

Управление памятью

Размерные типы распределяются на программном стеке, по-

этому не нуждаются в специальном управлении памятью. Под гло-

бальные размерные переменные память распределена всё время

работы программы. Под локальные размерные переменные память

выделяется в момент вызова подпрограммы, а освобождается в мо-

мент завершения работы этой подпрограммы.

Управление памятью для ссылочных типов осуществляется ав-

томатически сборщиком мусора. Сборщик мусора запускается в не-

определённый момент времени, когда управляемой памяти пере-

стаёт хватать. Он возвращает в пул неиспользуемой памяти те объ-

екты, на которые больше никто не ссылается, после чего дефрагмен-

тирует оставшуюся память, в результате чего динамическая память

всегда дефрагментирована и её выделение при вызове конструктора

происходит практически мгновенно.

64

Передача в подпрограммы

При передаче размерных типов по значению происходит копи-

рование значения фактического параметра в переменную-формаль-

ный параметр. Если размерный тип имеет большой размер, это мо-

жет занимать продолжительное время, поэтому размерный тип в

этом случае передаётся по ссылке на константу.

Пример 3.6.

type Arr = array [1..100] of integer;
…
procedure PrintArray(const a: Arr; n: integer);
begin
 for var i:=1 to n do
 Print(a[i])
end;

Ссылочные типы передаются в подпрограмму, как правило, по

значению. При передаче таких параметров происходит копирование

ссылки, в результате формальный и фактический параметр будут

ссылаться на один объект.

Пример 3.7.

procedure Change666(a: array of integer);
begin
 a[0] := 666;
end;

При этом в результате изменения формального параметра

внутри подпрограммы меняется и содержимое соответствующего

фактического параметра при вызове подпрограммы.

Детально о типах данных в PascalABC.NET говорится в

ГлавеОшибка! Источник ссылки не найден.

3.6. Типы данных в ࡭࡮ࢂ

Тип данных – это характеристика переменной, определяющая

тип содержащихся в ней данных. К типам данных относятся типы, ука-

занные в табл. 5, а также пользовательские типы и определенные

типы объектов.

65

Таблица 5

Типы данных в VBA

Тип данных Размер
(в байтах)

Описание и диапазон значений

1 2 3
Array Зависит от числа

элементов и их раз-
мера

Массив переменных любого встроенного
типа данных

Boolean 2 Одно из логических значений: ࢋ࢛࢘ࢀ (ис-
тина) или ࢋ࢙࢒ࢇࡲ (ложь)

Byte 1 Положительное число от 0 до 255
Currency 8 Используется для денежных вычислений

с фиксированным количеством десятич-
ных знаков.
От -922 337 203 685 477,5808
до 922 337 203 685 477,5807

Date 8 Комбинация информации о дате и вре-
мени.
Диапазон дат:
от 01.01.0100 г. до 31.12.9999 г.
Диапазон времени:
от 00:00:00 до 23:59:59

Decimal 14 Десятичное представление данных в це-
лочисленной или вещественной форме

Double 8 Число с плавающей точкой двойной точ-
ности.
Отрицательные числа:
от -1,79769313486232Е+308
до -4,94065645841247Е-324.
Положительные числа:
от 4,94065645841247Е-324
до 1,79769313486232Е+308

Integer 2 Целое число от -32 768 до 32 76
Long 4 Длинное целое число:

от -2 147 483 648 до 2 147 483 647
Object 4 Ссылка на любой определённый объект,

распознаваемый ܸܣܤ
Single 4 Число с плавающей точкой обычной точ-

ности.
Отрицательные числа
от -3,402823Е+38 до 1,401298Е-45.
Положительные числа
от 1,401298Е-45 до 3,402823Е+38

String (пере-
менной
длины)

10 байт + длина
строки

Длина строки от 0 до 2 миллиардов сим-
волов

66

Продолжение табл.Таблица 5

1 2 3

String (фикси-
рованной
длины)

Длина строки (1 байт
на символ)

Длина строки от 0 до приблизительно
65 400 символов

Variant 16 байт + 1 байт на
каждый символ
строки

Может использоваться для хранения лю-
бого типа данных, кроме строк фиксиро-
ванной длины. Диапазон зависит от фак-
тически сохраняемых данных

Контрольные вопросы к главе 3

1. Что такое типы данных?
2. Могут ли существовать языки программирования без типов

данных?
3. Что понимается под полиморфным типом данных?
4. Какие преимущества от использования типов данных?
5. Какие бывают системы типизации данных?
6. Что понимается под контролем типов?
7. Что понимается под классификацией типов данных?
8. Какие типы данных относятся к простым, какие к сложным (со-

ставным)?
9. Что такое размерные и ссылочные типы данных?

10. Какие типы данных используются в ࡭࡮ࢂ?

11. Для чего в ܸܣܤ используется тип данных ࢚࢔ࢇ࢏࢘ࢇࢂ?

12. Для чего в ܸܣܤ используется тип данных ࢚ࢉࢋ࢐࢈ࡻ?

13. Какова длина в байтах типа данных ࢋ࢒ࢍ࢔࢏ࡿ?
14. Что понимается под термином «ссылочный тип»?
15. Что происходит при передаче размерных типов по значению?

67

Глава 4. СТРУКТУРА ПРОГРАММЫ

4.1. Структура программы ࢀࡱࡺ.࡯࡮࡭࢒ࢇࢉ࢙ࢇࡼ

4.1.1. Алфавит

Алфавит языка состоит из множества символов, включающих в
себя буквы, цифры и специальные символы.

Латинские буквы: от ܣ до ܼ (прописные) и от а до ݖ (строчные).

Цифры: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Шестнадцатеричные цифры: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, А, В, С, ,ܦ ,ܧ .ܨ

Специальные символы: ሺ൅	–	∗്	൏	൐ 	 ሾ	ሿ. , ሺ	ሻ:	; 	ሼ	ሽ^	@$		#ሻ

Следующие комбинации специальных символов являются еди-
ными символами (их нельзя разделять пробелами):

≔ знак присваивания;

൑	меньше или равно; ൐ൌ больше или равно;	൏൐ не равно;

ሺ∗	∗ሻ ограничители комментариев, (используются наряду с ሼ┤ሽ);

	ሺ. . ሻ эквивалент ሾ	ሿ.

Пробелы – символ пробела (ܫܫܥܵܣ െ 32) и все управляющие

символы кода ܫܫܥܵܣ (от 0 до 31).

Программа содержит ключевые слова, идентификаторы, ком-
ментарии. Ключевые слова используются для выделения синтакси-
ческих конструкций и подсвечиваются жирным шрифтом в редакторе.
Идентификаторы являются именами объектов программы и не могут
совпадать с ключевыми словами.

4.1.2. Идентификатор

Идентификаторы служат в качестве имён программ, модулей,
процедур, функций, типов, переменных и констант. Идентификато-
ром считается любая последовательность латинских букв или цифр,
начинающаяся с буквы. Буквой считается также символ подчёркива-
ния "_".

68

Например, ܽ1, 〖_݄〗, ܾ123 - идентификаторы, а 1ܽ, ф2 - нет.

Длина идентификатора может быть произвольной, но знача-
щими являются только первые 63 символа (рис. 20).

С каждым идентификатором связана область действия иденти-
фикатора.

Следующие слова являются ключевыми, служат для оформле-
ния конструкций языка и не могут использоваться как идентифика-
торы:

and array as auto begin
case class const constructor destructor
div do downto else end

event except file final finalization
finally for foreach function goto

if implementation in inherited initialization
interface is label lock mod

nil not of operator or
procedure program property raise record

repeat set shl shr sizeof
template then to try type
typeof until uses using var
where while with xor

Ряд слов являются контекстно ключевыми (они являются клю-
чевыми только в некотором контексте):

abstract default external forward internal
on overload override params private

protected public read reintroduce unit
virtual write

Контекстно ключевые слова могут использоваться в качестве
имён.

Рис. 20. Синтаксическая диаграмма идентификатора

69

Некоторые ключевые слова совпадают с важнейшими именами

платформы . -предусмотрена возмож ܶܧܰ.ܥܤܣ݈ܽܿݏܽܲ Поэтому в .ܶܧܰ
ность использовать эти имена без конфликтов с ключевыми словами.

Первый способ состоит в использовании квалифицированного
имени.

Пример 4.1.

var a: System.Array;

В этом контексте слово ݕܽݎݎܣ является именем внутри про-

странства имён ܵ݉݁ݐݏݕ, и конфликта с ключевым словом ܽݕܽݎݎ нет.

Второй способ состоит в использовании специального символа

& перед именем. В этом случае имя может совпадать с ключевым
словом.

Пример 4.2.

uses System;
var a: &Array;

4.1.3. Комментарий

Комментарии – это участки кода, игнорируемые компилятором
и используемые программистом для пояснения текста программы.

В ܲܽܶܧܰ.ܥܤܣ݈ܽܿݏ имеется несколько типов комментариев.

Последовательность символов между фигурными скобками ሼ	ሽ
или символами ሺ∗ и ∗ሻ считается комментарием:

{ Это
комментарий }
(* Это
тоже комментарий *)

Комментарием также считается любая последовательность
символов после символов // и до конца строки:

var Version: integer; // Версия продукта

Комментарии разных типов могут быть вложенными:

{ Это ещё один
(* комментарий *)}

70

4.1.4. Структура программы на Pascal

В целом программа на языке Pascal состоит из двух основных
частей: описания всех данных, с которыми производятся действия, и
описания самих действий (табл. 6). Кроме этого, в самом начале про-
граммы может присутствовать ее название – заголовок, который рас-
сматривается как комментарий. В самом конце программы ставится
точка.

Таблица 6

Общая структура программы на Pascal

Блок структуры, описание Комментарий
 имя программы; Имя программы пишется английскими ܯܣܴܩܱܴܲ

буквами в одно слово в соответствии
с правилами написания идентифика-
торов. Первая строка называется за-
головком программы и не является
обязательной

-подключаемые библиотеки (мо ܵܧܷܵ
дули);

Раздел ݏ݁ݏݑ начинается с ключевого
слова ݏ݁ݏݑ, за которым следует список
имён модулей и пространств имён
. .перечисляемых через запятую3 ,ܶܧܰ

Раздел опи-
саний. Дан-
ные подраз-
делы сле-
дуют друг за
другом в
произволь-
ном порядке.

-список меток; Из одного места программы «пры ܮܧܤܣܮ
гать» в другое

-раздел описа ܱܶܵܰܥ
ния констант;

Постоянные величины, их нельзя из-
менять

-определение гло ܴܣܸ
бальных переменных;

Описание всех переменных величин,
которые в программе могут изме-
няться

 описание типов ܧܻܲܶ
переменных;

ОПРЕДЕЛЕНИЕ ПРО-
ЦЕДУР;

ОПРЕДЕЛЕНИЕ ФУНК-
ЦИЙ;

 ,Внутри блока находятся операторы ܰܫܩܧܤ
отделяемые один от другого симво-
лом «точка с запятой». Среди опера-
торов может присутствовать оператор
описания переменной, который позво-
ляет описывать переменные внутри
блока.

основной блок программы4
 .ܦܰܧ

3 Раздел ݏ݁ݏݑ и раздел описаний могут отсутствовать, подробнее см. в разделе 4.1.9.

4 Хороший тон – в этом блоке команды формировать с отступом от левой границы.

71

Пример 4.3.

program MyProgram;
var
 a,b: integer;
 x: real;
begin
 readln(a,b);
 x := a/b;
 writeln(x);
end.

или

uses GraphABC;
begin
 var x := 100;
 var y := 100;
 var r := 50;
 Circle(x,y,r);
end.

4.1.5. Раздел описания меток

Раздел описания меток начинается с зарезервированного

слова ݈ ܾ݈ܽ݁, после которого следует список меток, перечисляемых че-
рез запятую. В качестве меток могут быть использованы идентифи-
каторы и положительные целые числа:

label a1, l2, 777777;

Метки используются для перехода в операторе ݃݋ݐ݋.

4.1.6. Раздел описания констант

Раздел описания именованных констант начинается со служеб-

ного слова ܿݐݏ݊݋, после которого следуют элементы описания вида:

имя константы = значение;
или
имя константы : тип = значение;

Пример 4.4.

const
 Pi = 3.14;
 Count = 10;
 Name = 'Mike';

72

 DigitsSet = ['0'..'9'];
 Arr: array [1..5] of integer = (1,3,5,7,9);
 Rec: record name: string;
 age: integer end = (name: 'Иванов'; age: 23);
 Arr2: array [1..2,1..2] of real = ((1,2),(3,4));

4.1.7. Раздел описания переменных

Переменная - в языках программирования - именованная часть
памяти, в которую могут помещаться разные значения. Причём в каж-
дый момент времени переменная имеет единственное значение. В
процессе выполнения программы значение переменной может изме-
няться.

Тип переменных определяется типом данных, которые они
представляют.

В программировании переменная (݈ܾ݁ܽ݅ݎܽݒ) – это своего рода
ёмкость для хранения данных. Когда информация записана в пере-
менной (или по-другому, когда переменной присвоено значение), то-
гда эту информацию можно изменять, выводить, преобразовывать и
т.д.

Такого типа переменная универсальна:

 в ней можно хранить информацию;
 можно из неё извлекать информацию, что не повлияет на зна-

чение самой переменной;
 в неё можно записать новые данные.

Причём эти действия можно выполнять практически сколько
угодно раз. Из названия ясно, что переменная – вещь непостоянная.
Переменные существуют или содержат в себе значение исключи-
тельно во время работы программы. Как только завершается выпол-
нение программы – существование переменных прекращается.

Переменные появились с первыми языками программирования.
Результат работы любой программы сводится к выполнению дей-

ствий над какими-либо данными. Напомним, что память (݉݁݉ݕݎ݋) –

это последовательность байтов (ܾ݁ݐݕ), каждый из которых принимает
значения от 0 до 255. Так как байтов неимоверно много, единствен-

73

ный способ различать их – это присвоение каждому из них порядко-
вого номера. Каждый байт оперативной памяти доступен процессору
через его порядковый номер. Этот порядковый номер называется
адресом байта.

Во времена, когда программы писались на машинном коде, про-
граммист должен был запоминать в какой участок памяти он записал
нужное значение. Представьте, как усложнялся процесс написания
программы, когда возникала необходимость работы с несколькими
значениями. Адрес байта памяти есть число, которое мало, о чём го-
ворит. Большой объем памяти создаёт трудности программисту.

С первыми языками программирования появилась полезная
возможность связывания определённого участка оперативной па-
мяти с символьным названием (набором символов). По сравнению с
адресом название переменной может отражать содержимое этого
участка памяти. Но имя переменной – не единственная вещь, которая
определяет переменную. Процессор может обрабатывать три вида
данных: байт, слово и двойное слово5. Поэтому определение вида
переменной в языках нижнего и среднего уровней происходит обычно
указанием типа переменной. Эти два свойства переменной (название
и тип) определяют нужный участок памяти и способ его использова-
ния. В большинстве случаев именно тип переменной определяет,
сколько байтов памяти захватит переменная. Например, переменной

типа ܧܻܶܤ присвоено имя ܣ. Процессор по названию переменной (ܣ)
определяет её место в памяти и при извлечении значения этой пере-
менной воспользуется командой, предназначенной для извлечения
байта (не слова и не двойного слова).

В общем случае переменная – это поименованный участок опе-
ративной памяти, используемый для временного хранения данных. В
зависимости от языка программирования, объявление переменной
может сопровождаться указанием его типа.

В современном мире программирования программист должен
знать не только имя и тип переменной. Также существуют понятия

5 Термины «слово» (2 байта) и «двойное слово» (4 байта) здесь используются в узкоспециаль-
ном смысле, отражая собой размер участка памяти, выделенного под переменную.

74

пространства имён и область действия переменной. Представьте,
что создаётся программа, в которой используются несколько пере-
менных. Имена этих переменных составляют список, который опре-
деляет пространство имён. Представим, что в ходе создания про-
граммы мы, по ошибке, объявили две переменные с одинаковыми
названиями. При попытке запуска программы его компилятор сооб-
щит об этой ошибке. Это было бы невозможно, если бы компилятор
не контролировал переменные. То есть контроль безупречности про-
странства имён возлагается от программиста на компилятор; что об-
легчает процесс создания и отладки программы. На практике, приве-
дённый пример не во всех языках приводит к ошибке. Каждый компи-
лятор (или интерпретатор) имеет собственные требования к про-
странству имён. То, что является ошибкой в одном языке, в других
языках ошибкой может и не быть.

Если раньше программы были небольшие и их исходный код
располагался в одном файле, то сейчас текст кода может состоять из
нескольких файлов. И запомнить уникальное имя каждой перемен-
ной, использующейся в программе, становится практически невоз-
можным. Поэтому (и не только) было введено понятие «область дей-
ствия» (или «область существования») переменных. Область дей-
ствия – понятие абстрактное. Оно применяется только в языках сред-
него и высокого уровней. Целью применения области действия явля-
ется разделение пространства имён на несколько независимых ча-
стей. Это означает, что переменная, объявленная в одном файле,
может быть абсолютно недоступна в других файлах. Например, мы

можем объявить переменную с именем ݎܸܽݕܯ в нескольких файлах
проекта, и это не будет ошибкой.

Таким образом, переменная в программировании обладает сле-
дующими характеристиками:

 имя;
 адрес;
 тип;
 размер, который обычно определятся типом;
 принадлежность какому-либо пространству имён;
 область действия.

75

Переменные могут быть описаны в разделе описаний, а также
непосредственно внутри любого блока ܾ݁݃݅݊/݁݊݀.

Раздел описания переменных начинается с ключевого слова
 :после которого следуют элементы описания вида ,ݎܽݒ

список имен: тип;
или
имя: тип := выражение;
или
имя: тип = выражение; // для совместимости с Delphi
или
имя := выражение;

Имена в списке перечисляются через запятую.

Пример 4.5.

var
 a,b,c: integer;
 d: real := 3.7;
 s := 'PascalABC forever';
 al := new List<integer>;
 p1 := 1;

В последних трёх случаях тип переменной автоматически опре-
деляется по типу правой части. Автовыведение типа активно исполь-
зуется при инициализации переменной вызовом конструктора или
функции, возвращающей объект:

begin
 var l := new List<integer>;

 var a := Seq(1,3,5); тип ܽ выводится по типу возвращае-
мого значения ܵ݁ݍ: ݎ݁݃݁ݐ݊݅	݂݋	ݕܽݎݎܽ

end.

Автовыведение типа при описании невозможно при инициали-
зации переменной лямбда-выражением:

 var f := x -> x*x; так нельзя!
 var f : Func<integer,integer> := x -> x*x;

Внутриблочные описания используются, чтобы не захламлять
раздел описаний описанием вспомогательных переменных. Кроме
этого, внутриблочные описания позволяют вводить переменные
именно в тот момент, когда они впервые потребовались. Оба этих
фактора существенно повышают читаемость программы.

Кроме того, переменные-параметры цикла могут описываться в
заголовке операторов ݂ݎ݋ и ݂݄ܿܽ݁ݎ݋.

76

4.1.8. Раздел описания типов

Тип данных может быть либо описан непосредственно в раз-
деле описания переменных, либо определяться идентификатором
типа. Стандартные типы не требуют описания, в отличие от типов,
определенных пользователем. Строго говоря, синтаксис языка
Pascal не требует обязательного определения идентификатора типа
и в последнем случае, так как тип можно задать перечислением в раз-
деле описания переменных. Выбор описания типа зависит, таким об-
разом, только от программиста и специфики программы. Раздел опи-
сания типов данных начинается зарезервированным словом type, за
которым следуют одно или несколько определений типов, разделен-
ных точкой с запятой.

Type <имя типа> = тип [<значение типа>];

Пример 4.6.

type
 arr10 = array [1..10] of integer;
 myint = integer;
 pinteger = ^integer;
 IntFunc = function(x: integer): integer;

type
 LatLetter = ('A'..'z');
 Days = 1..31:
 Matr = аггау[1..10] of integer;

Каждое описание задает множество значений и связывает с
этим множеством некоторое имя типа. Например, в данном описании
тип LatLetter определяет множество букв латинского алфавита, Days
– множество целых чисел от 1 до 31, Matr – массив из 10 целых чисел.

4.1.9. Раздел USES

Раздел uses состоит из нескольких подряд идущих секций uses,
каждая из которых имеет вид:

uses список имен;

Имена в списке перечисляются через запятую и могут быть либо
именами подключаемых внешних модулей PascalABC.NET, либо про-
странствами имен .NET. Например:

uses System, System.Collections.Generic, MyUnit;

77

Здесь MyUnit - модуль PascalABC.NET, представленный в виде

исходного текста или откомпилированного .pcu-модуля, System и

System.Collections.Generic - пространства имен .NET.

В модуле или основной программе, которая содержит раздел

uses, можно использовать все имена из подключаемых модулей

PascalABC.NET и пространств имен .NET. Основное отличие между

модулями и пространствами имен .NET состоит в том, что модуль со-

держит код, а пространства имен .NET содержат лишь имена - для

использования кода его необходимо подключить с помощью дирек-

тивы компилятора {$reference ИмяСборки}, где ИмяСборки - имя dll-

файла, содержащего .NET-код. Другое не менее важное отличие со-

стоит в том, что в модуле или основной программе нельзя использо-

вать имена, определенные в другом модуле, без подключения этого

модуля в разделе uses. Напротив, если сборка .NET подключена ди-

рективой $reference, то можно использовать ее имена, явно уточняя

их пространством имен, не подключая это пространство имен в раз-

деле uses. Например:

begin

 System.Console.WriteLine('PascalABC.NET');

end.

По умолчанию в первой секции uses неявно первым подключа-

ется системный модуль PABCSystem, содержащий стандартные кон-

станты, типы, процедуры и функции. Даже если раздел uses отсут-

ствует, модуль PABCSystem подключается неявно. Кроме того, по

умолчанию с помощью неявной директивы $reference подключаются

сборки System.dll, System.Core.dll и mscorlib.dll, содержащие основ-

ные .NET-типы.

Поиск глобальных имен осуществляется вначале в текущем мо-

дуле или основной программе, затем во всех подключенных модулях

и пространствах имен, начиная с самого правого в секции uses и за-

канчивая самым левым. При этом считается, что пространство имен

более правого модуля вложено в пространство имен более левого.

78

Таким образом, конфликта имен не происходит. Если необходимо ис-

пользовать имя из конкретного модуля или пространства имен, то

следует использовать запись

Например, в программе:

uses unit1, unit2;

begin

 id := 2;

end.

описание переменной id будет искаться вначале в основной про-

грамме, затем в модуле unit2, затем в модуле unit1. При этом в раз-

ных модулях могут быть описаны разные переменные id. Данная си-

туация означает, что unit1 образует внешнее пространство имен, про-

странство имен unit2 в него непосредственно вложено, а простран-

ство имен основной программы вложено в unit2.

Если в последнем примере оба модуля – unit1 и unit2 – опреде-

ляют переменные id, то рекомендуется уточнять имя переменной

именем модуля, используя конструкцию ИмяМодуля.Имя:

uses unit1, unit2;

begin

 unit1.id := 2;

end.

В качестве имени модуля может выступать также имя основной

программы, если у нее присутствует заголовок program.

Во многих случаях стандартные для PascalABC.NET возможно-

сти ввода/вывода данных с помощью стандартных процедур оказы-

ваются недостаточными для разработки удобных в использовании

диалоговых программ. В библиотеке (модуле) CRT предусмотрено

несколько подпрограмм, существенно увеличивающих возможности

текстового ввода/вывода (табл.7).

79

Таблица 7

Команды модуля CRT

Оператор Назначение Пример
WINDOW Процедура. Установить границы

текстового окна, относительно ле-
вого верхнего угла экрана. Форма
записи:
WINDOW(X1,Y1,X2,Y2), где X1, Y1
– координаты левого верхнего
угла;
X2, Y2 – координаты правого ниж-
него угла.

WINDOW(1,1,10,5);

CLRSCR Процедура. Очистить экран или
текущее текстовое окно, помещая
курсор в левый верхний угол (коор-
динаты 1,1) и закрасить текущим
цветом фона.

CLRSCR;

CLREOL Процедура. Стирает все символы
до конца строки, начиная с пози-
ции курсора.

CLREOL;

INSLINE Процедура. Вставить пустую
строку, все нижестоящие строки
перемещаются на одну позицию
вниз.

INSLINE;

DELLINE Процедура. Стереть строку, на ко-
торой находится курсор, все ниже-
стоящие строки перемещаются на
одну позицию вверх.

DELLINE;

TEXTCOLOR Процедура. Установить цвет выво-
димых символов. Форма записи:
TEXTCOLOR(COLOR), где COLOR
– цвет выводимых символов (диа-
пазон 0 – 15).

TEXTCOLOR(1);

TEXTBACKGROU
ND

Процедура. Установить цвет фона
выводимых символов. Форма за-
писи:
TEXTBACKGROUND(COLOR), где
COLOR – цвет фона (диапазон 0 –
7).

TEXTBACKGROUND(
3);

GOTOXY Процедура. Установить позицию
курсора, относительно левого
верхнего угла активного тексто-
вого окна. Форма записи:
GOTOXY(X,Y)
X, Y – координаты.

GOTOXY(2,4);

WHEREX Функция целого типа. Узнать пози-
цию курсора по X.

X:=WHEREX;

80

Продолжение табл. 7

Оператор Назначение Пример
WHEREY Функция целого типа. Узнать пози-

цию курсора по Y.
Y:=WHEREY;

KEYPRESSED Функция логического типа. Возвра-
щает значение типа BOOLEAN, ука-
зывающее состояние буфера кла-
виатуры: FALSE означает, что бу-
фер пуст, а TRUE – что в буфере
есть хотя бы один символ, ещё не
прочитанный программой.
Обращение к функции не задержи-
вает исполнение программы.

REPEAT
 WRITE('SLOVO')
UNTIL KEY-
PRESSED;

READKEY Функция символьного типа, возвра-
щает значение типа CHAR. Оста-
навливает выполнение программы
до нажатия любой клавиши и воз-
вращает её код.

A:=READKEY;

DELAY Процедура. Установить задержку
работы программы на заданный ин-
тервал времени. Форма записи:
DELAY(I), где I – выражение типа
WORD, определяющее интервал
времени.

DELAY(500);

SOUND Процедура. Выдать звук заданной
частоты. Форма записи:
SOUND(I), где I – выражение типа
WORD, частота звука в герцах.

SOUND(1500);

NOSOUND Процедура. Выключить звук. NOSOUND;

4.2. Структура программы на ࡭࡮ࢂ

В окне ܲݐ݆ܿ݁݋ݎ	ݎ݁ݎ݋݈݌ݔܧ (см. раздел 2.3.1) представлено дерево

компонентов вашего приложения ܸܣܤ.

Самый верхний уровень – это проект (ܲݐ݆ܿ݁݋ݎ), которому соот-

ветствует документ ܹ݀ݎ݋, рабочая книга ݈݁ܿݔܧ, презентация

-и прочие файлы, с которыми работает данное приложе ݐ݊݅݋ܲݎ݁ݓ݋ܲ

ние. Например, если вы открыли редактор ܸ݈݅ܽݑݏ	ܿ݅ݏܽܤ из ܹ݀ݎ݋, то в

 будут представлены все открытые в настоящее ݎ݁ݎ݋݈݌ݔܧ	ݐ݆ܿ݁݋ݎܲ

время файлы ܹ݀ݎ݋ и ещё шаблон ݈ܰܽ݉ݎ݋. Если редактор .ݐ݋݀

 будут открытые ݎ݁ݎ݋݈݌ݔܧ	ݐ݆ܿ݁݋ݎܲ то в ,݈݁ܿݔܧ открыт из ܿ݅ݏܽܤ	݈ܽݑݏܸ݅

книги ݈݁ܿݔܧ и специальная скрытая книга ܲܮܣܱܴܰܵܧ. .ܵܮܺ

81

Помимо того, что обычно содержится в документах ܵܯ	ܱ݂݂݅ܿ݁
(текст, рисунки, формулы и т.п.), каждый проект (который и есть доку-
мент) – это одновременно и контейнер для хранения стандартных мо-
дулей, модулей классов, и пользовательских форм. Добавить в про-

ект каждый из этих компонентов можно при помощи меню ݐݎ݁ݏ݊ܫ или

через контекстное меню в ܲݐ݆ܿ݁݋ݎ	ݎ݁ݎ݋݈݌ݔܧ. Модули добавляются в

проект командой ݈݁ݑ݀݋ܯ – ݐݎ݁ݏ݊ܫ (Вставить – Модуль). Формы созда-

ются командой ݉ݎ݋ܨݎ݁ݏܷ – ݐݎ݁ݏ݊ܫ (Вставить – UserForm), а модули

класса – командой ݏݏ݈ܽܥ – ݐݎ݁ݏ݊ܫ	݈݁ݑ݀݋ܯ (Вставить – Модуль класса).

Стандартные модули – это просто блоки с текстовым представ-

лением команд ܸܣܤ. В нем может быть только два раздела:

 раздел объявлений уровня модуля (объявление переменных
и констант уровня модуля);

 раздел методов модуля (расположение процедур и функций).

При работе макрорекордера в ܹ݀ݎ݋ в проекте ݈ܰܽ݉ݎ݋. или ݐ݋݀
текущем документе (в зависимости от места сохранения макроса) ав-

томатически создается стандартный модуль ܰ݁ݏ݋ݎܿܽܯݓ (в ݈݁ܿݔܧ –

 куда и записываются все создаваемые макрорекордером ,(1݈݁ݑ݀݋ܯ
макросы.

В большинстве проектов ܸܣܤ используется только один стан-
дартный модуль, куда и записывается весь код. Создавать новые
стандартные модули есть смысл только из следующих соображений:

 для удобства экспорта и импорта (из контекстного меню в
-Так можно очень удобно обмениваться бло .(ݎ݁ݎ݋݈݌ݔܧ	ݐ݆ܿ݁݋ݎܲ

ками кода между приложениями ܸܣܤ (и обычного ܸܤ);

 для повышения производительности. При вызове любой про-
цедуры модуля происходит компиляция всего модуля, по-
этому иногда выгоднее разместить процедуры в разных мо-
дулях, чтобы компилировать только нужный в данный момент
код;

 для улучшения читаемости. Если ваше приложение выпол-
няет разные группы задач, то код, относящийся к каждой
группе, лучше поместить в свой модуль.

82

Модули классов позволяют создавать свои собственные классы
– чертежи, по которым можно создавать свои собственные объекты.
Обычно используются только в очень сложных приложениях. Приме-

няются они в обычных приложениях ܸܣܤ редко и здесь рассматри-
ваться не будут.

Пользовательские формы являются одновременно хранили-
щем элементов управления и программного кода, который относится
к ним, самой форме и происходящими с ними событиями.

Ещё один важный контейнер в ܲݐ݆ܿ݁݋ݎ	ݎ݁ݎ݋݈݌ݔܧ – контейнер
 то есть контейнер ссылок. В нем ,(рис. 21) (его нет ݈݁ܿݔܧ в) ݏ݁ܿ݊݁ݎ݂ܴ݁݁
показывается, ссылки на какие другие проекты (документы ܹ݀ݎ݋)
есть в нашем проекте и соответственно какие «чужие» программные
модули мы можем использовать. По умолчанию в каждый проект
.݈ܽ݉ݎ݋݊ то есть шаблон) ݈ܽ݉ݎ݋ܰ помещается ссылка на ݀ݎ݋ܹ – (ݐ݋݀
и вы в любом файле можете использовать макросы оттуда.

Обратите внимание, что в этом контейнере, – только ссылки на
другие документы.

Ещё одна полезная возможность ܲݐ݆ܿ݁݋ݎ	ݎ݁ݎ݋݈݌ݔܧ – возмож-
ность настроить свойства проекта. Для этого нужно щёлкнуть правой
кнопкой мыши по узлу ܲݐ݆ܿ݁݋ݎ (ܸݐ݆ܿ݁݋ݎܲܣܤ в ݈݁ܿݔܧ) и в контекстном

Рис. 21. Контейнеры References

83

меню выбрать ܲݐ݆ܿ݁݋ݎ	ݏ݁݅ݐݎ݁݌݋ݎܲ (то же окно можно открыть и через
меню ܶݏ݈݋݋	 → :В этом окне можно .ݏ݁݅ݐݎ݁݌݋ݎܲ	ݐ݆ܿ݁݋ݎܲ	

 изменить имя проекта. Эта возможность потребуется, если у
вас есть ссылки на проект с одинаковыми именами;

 ввести описание проекта, информацию о файле справки и па-
раметры, которые будут использоваться компилятором;

 защитить проект, введя пароль. Не зная этот пароль, проект
нельзя будет просмотреть или отредактировать.

И все-таки, что обычно приходится делать в окне
 ?ݎ݁ݎ݋݈݌ݔܧ	ݐ݆ܿ݁݋ݎܲ

Если вам нужно создать свой макрос вручную, а макросов в дан-
ном документе ещё нет, то нужно будет щёлкнуть правой кнопкой
мыши по узлу проекта (строке, выделенной полужирным цветом) и в
контекстном меню дать команду ݐݎ݁ݏ݊ܫ	 → В проекте будет .݈݁ݑ݀݋ܯ	
создан новый модуль и сразу открыт в окне редактора кода.

Если вы уже создавали макросы в этом проекте (макрорекорде-
ром или вручную), то модуль будет уже создан. Его можно будет уви-
деть под контейнером ݏ݈݁ݑ݀݋ܯ. Чтобы его открыть в окне редактора
кода, достаточно щелкнуть по нему два раза мышью. Там можно бу-
дет найти созданные вами средствами макрорекордера макросы.

ВАЖНО: Обязательно подумайте, где вам будет нужен создаваемый
код – только в одном документе или во всех документах
данного приложения. Если он нужен будет только в одном
документе, то используйте стандартный программный мо-
дуль этого документа. Если во всех, то используйте про-
граммные модули проекта ݈ܰܽ݉ݎ݋ (в ܹ݀ݎ݋) или
.ܮܣܱܴܰܵܧܲ .(݈݁ܿݔܧ в) ܵܮܺ

Если вам нужно создать графическую форму с элементами
управления (кнопками, текстовыми полями, ниспадающими списками
и т.п.), то нужно щёлкнуть правой кнопкой мыши по узлу проекта и в
контекстном меню выбрать ݐݎ݁ݏ݊ܫ	 → Новая форма будет .݉ݎ݋ܨݎ݁ݏܷ	
создана и открыта в окне дизайнера форм.

К основным понятиям языка ܸܣܤ относятся: переменные, мас-
сивы, константы, операторы, процедуры, функции и т. п.

84

Данными (ࢇ࢚ࢇࢊ) называются объекты, обрабатываемые про-
граммой.

Для хранения временных значений (данных) используются пе-
ременные.

Переменной (࢜ࢋ࢒࢈ࢇ࢏࢘ࢇ) называется имя, определяющее об-
ласть памяти для хранения величины, которая может изменяться во
время выполнения программы.

Каждая переменная имеет имя, значение и характеризуется ти-
пом.

Идентификатор (࢘ࢋ࢏ࢌ࢏࢚࢔ࢋࢊ࢏) – это имя, которое дается эле-
ментам в создаваемых процедурах и модулях таким же, как перемен-
ным.

Правила выбора имени переменной (идентификатора):

 начинается с буквы, за которой может следовать любая ком-
бинации букв, цифр и символов подчёркивания "_";

 не может превышать 255 символов;
 не может совпадать с ключевыми словами и именами стан-

дартных объектов ܸܣܤ;

 должно быть уникальным в рамках его области действия
 т.е. в пределах процедуры или модуля, в котором ,(݁݌݋ܿݏ)
объявлена данная переменная (об области действия пере-
менных будет сказано ниже).

Имена переменных не «чувствительны» к состоянию регистра.

Переменные могут хранить любые типы данных, определённых
в VBA.

Константы (constant) – еще один контейнер для хранения
данных, но, в отличие от переменных, они не изменяются в ходе вы-
полнения VBA-программы. Для чего нужны константы:

 код становится лучше читаемым, убираются потенциальные
ошибки;

 чтобы изменить какое-либо значение, которое много раз ис-
пользуется в программе (например, уровень налога), – это
можно сделать один раз.

85

Тип данных (ࢇ࢚ࢇࢊ	ࢋ࢖࢚࢟) – это характеристика определённого
вида данных, которые ܸ -сохраняет и которыми может манипулиро ܣܤ
вать.

Тип данных определяет:

 формат (размер) хранения данных;
 диапазон допустимых значений данных;
 операции, которые могут выполняться над данными.

В табл. 5 приведена краткая сводка основных типов данных, ис-
пользуемых ܸܣܤ.

Структурная схема описания переменных и констант приведена
ниже (рис. 22).

-не требует обязательного объявления переменных. Допус ܣܤܸ
кается использование переменных без явного описания. ܸ создаёт ܣܤ
переменную и резервирует память для её хранения, когда эта пере-
менная в первый раз появляется в каком-либо операторе ܸܣܤ
(обычно в операторе присваивания). Создание переменной путём её
использования в операторе называется неявным объявлением пере-
менной. В случае если переменная не была объявлена, ей автомати-
чески присваивается тип ܸܽݐ݊ܽ݅ݎ. Этот тип является универсальным
и может содержать данные различных подтипов: ݃݊݋ܮ ,ݎ݁݃݁ݐ݊ܫ,
 и т.п. Неявное объявление переменных известно так же, как ݃݊݅ݎݐܵ
объявление переменных «на лету» (݊݋ െ ݄݁ݐ െ .(ݕ݈݂

 предоставляет возможность выполнять явное объявление ܣܤܸ
переменных, которое имеет много преимуществ:

Данные

Переменная Константа

Область действияТип данных Идентификатор

Локальная

Глобальная

Рис. 22. Структурная схема терминов

86

 Ускоряется выполнение кода. Скорость выполнения кода уве-
личивается на то количество времени, которое необходимо
для анализа и создания неявно объявленных переменных.

 Уменьшается количество ошибок в результате неправиль-
ного написания имени переменной.

 Код становится более понятным. Видя все объявления пере-
менных в начале модуля или процедуры, легко определить,
какие переменные используются в этом модуле или проце-
дуре и др.

Для явного объявления переменных используется оператор
 :со следующим форматом ݉݅ܦ

Dim <имяПеременной1> [As <типДанных>],
 [<имяПеременной2>] [As <типДанных>]

 имяПеременной݊ – это любой допустимый идентификатор пе-
ременной;

 типДанных – это любой тип данных, поддерживаемый ܸܣܤ.

Пример 4.7.

Dim A As Integer
Dim B, C, D As Single
Dim E As Variant
Dim F
Dim G As Double, H As String

В результате такого объявления переменные будут иметь сле-
дующие типы: А	– ,ܤ ,ݎ݁݃݁ݐ݊ܫ	 ,ܥ –	ܨ	и	ܧ –	ܦ ,ݐ݊ܽ݅ݎܸܽ	 –	ܩ ,݈݁݃݊݅ܵ	 ,݈ܾ݁ݑ݋ܦ	
–	ܪ .݃݊݅ݎݐܵ	

Переменные типа ܸ могут получать значения любого типа ݐ݊ܽ݅ݎܽ
в зависимости от контекста. Кроме того, они могут принимать и неко-
торые специальные значения:

 ݕݐ݌݉ܧ – переменная не была инициализирована;

 ݈݈ܰݑ – данные ошибочны;

 ݎ݋ݎݎܧ – значение содержит код ошибки, который может быть
использован для её обработки;

 ݄ܰ݃݊݅ݐ݋ – переменная типа ܱܾ݆݁ܿݐ ни на что не ссылается:
связь между ней и конкретным объектом прервана или не
установлена.

87

Переменные можно явно объявить и использовать, а можно ис-
пользовать и без объявления.

В Листинг 1 приведена процедура ݈݀ݎ݋ܹ݋݈݈݁ܪ, демонстрирую-
щая явное объявление переменной. Заметим, хорошим тоном среди
программистов считается правило структурировать исходный
код.

Листинг 1. Процедура ࢊ࢒࢘࢕ࢃ࢕࢒࢒ࢋࡴ с явным объявлением перемен-
ной:

1: Sub HelloWorld()
2: Dim HelloMsg ‘ переменная для MsgBox
3: HelloMsg = "Здравствуй, мир!"
4: MsgBox HelloMsg, , "Окно приветствия"
5: End Sub

Исходный код процедуры в реальных модулях ܸܣܤ не включает
номер каждой строки; в этом учебном пособии в некоторых листингах
приведены номера строк, чтобы было легче обозначать и объяснять
отдельные строки кода.

Разберём подробнее этот листинг (рис. 23).

В строке 1 объявляется процедура с именем ݈݀ݎ݋ܹ݋݈݈݁ܪ. Объ-
явление процедуры производится при помощи служебного слова ܾܵݑ
-объявляет пере (cтрока 2) ݉݅ܦ Оператор .(݉ܽݎ݃݋ݎ݌ܾݑݏ ,݁݊݅ݐݑ݋ݎܾݑݏ)
менную ݃ݏܯ݋݈݈݁ܪ типа ܸܽݐ݊ܽ݅ݎ. В строке 3 выполняется присваива-
ние значения переменной ݃ݏܯ݋݈݈݁ܪ. В строке 4 переменная ݃ݏܯ݋݈݈݁ܪ
используется в качестве первого аргумента процедуры ݔ݋ܤ݃ݏܯ – это
текст сообщения, выводимого на экран в диалоговом окне. Второй
аргумент процедуры ݔ݋ܤ݃ݏܯ пропущен, а в третьем задан заголовок
диалогового окна ("Окно приветствия").

Рис. 23. Листинг

88

В результате выполнения процедуры ݈݀ݎ݋ܹ݋݈݈݁ܪ на экране по-
явится диалоговое окно, показанное на рис. 24.

Явно объявить переменную можно как в начале блока, так и в
том произвольном месте, где возникла необходимость использовать
новую переменную. Лучше придерживаться стратегии, когда все пе-
ременные объявляются явно и, как правило, в начале блока. Можно
принудительно заставить себя следовать этой стратегии, вставив в
начало модуля оператор ܱ݊݋݅ݐ݌	ݐ݈݅ܿ݅݌ݔܧ (Опция «Явно») (рис. 25).
При этом объявление переменных становится обязательным. Опера-
тор ܱ݊݋݅ݐ݌	ݐ݈݅ܿ݅݌ݔܧ должен быть расположен в самом начале модуля
– до того, как начнется первая процедура этого модуля.

При отсутствии явного объявления переменной компилятор вы-
даст соответствующее сообщение и выполнение программы прекра-
титься до исправления выявленного несоответствия.

Рис. 24. Окно сообщения

Рис. 25. Результат работы Option Explicit

89

4.2.1. Процедуры и функции

Процедуры – это самые важные функциональные блоки языка
 вы можете выполнить только программный код, который ܣܤܸ В .ܣܤܸ
содержится в какой-либо процедуре – обычной в стандартном мо-
дуле, либо событийной для элемента управления на форме и т.п.
Иногда начинающие пользователи пытаются записать команды
прямо в область объявлений стандартного модуля и не могут понять,
почему они не выполняются (сообщений об ошибке при этом не вы-
даётся – просто этот код становится «невидим» для компилятора).
Причина проста – в разделе объявлений модуля (когда в верхних
списках показываются значения (݈ܽݎ݁݊݁ܩ) и (ݏ݊݋݅ݐܽݎ݈ܽܿ݁ܦ) могут быть
только объявления переменных уровня модуля и некоторые специ-
альные инструкции для компилятора. Весь остальной программный
код должен находится внутри процедур.

В ܸܣܤ предусмотрены следующие типы процедур:

Процедура типа ࢈࢛ࡿ (подпрограмма) – универсальная про-
цедура для выполнения каких-либо действий:

Sub Farewell()
MsgBox “Goodbye”
End Sub

Макрос в ࡭࡮ࢂ – это просто процедура типа ܾܵݑ, не имеющая
параметров. Только макросы можно вызывать по имени из редактора
-Все другие процедуры нужно вызы .݂݂ܱ݁ܿ݅	ܵܯ или приложения ܣܤܸ
вать либо из других процедур, либо специальными способами, о ко-
торых будет рассказано ниже (в разделе 6.2).

Процедура типа ࢔࢕࢏࢚ࢉ࢔࢛ࡲ (функция) – тоже набор команд,
которые должны быть выполнены. Принципиальное отличие только
одно: функция возвращает вызвавшей её программе какое-то значе-
ние, которое там будет использовано.

Итак, ещё раз подчеркнём: главное отличие между процеду-
рами Function и Sub состоит в том, что процедура Function возвра-
щает результат, процедура Sub – нет. Поэтому если требуется вы-
полнить действия и получить какой-то результат (например, просум-
мировать несколько чисел), то обычно используется процедура
Function, а для того, чтобы просто выполнить какие-то действия

90

(например, изменить форматирование группы ячеек), нужно выбрать
процедуру Sub.

Пример 4.8.

Function Tomorrow()
 Tomorrow = DateAdd("d", 1, Date())
End Function

и пример её вызова:

Private Sub Test1()
 Dim dDate
 dDate = Tomorrow
 MsgBox dDate
End Sub

В тексте функции необходимо предусмотреть оператор, кото-
рый присваивает ей какое-либо значение. В нашем случае это
строка Tomorrow = DateAdd(" d", 1, Date()).

В принципе процедуры типа ܾܵݑ тоже могут возвращать значе-
ния при помощи переменных. Зачем же тогда нужны функции? Все
очень просто: функцию можно вставлять практически в любое место
программного кода. Например, наш последний пример может выгля-
деть намного проще:

Private Sub Test 1()
MsgBox Tomorrow()
End Sub

Более подробно о разработке пользовательских процедур и
функции можно прочитать в главе 6.

В ܸܣܤ предусмотрены сотни встроенных функций (и гораздо
большее число предусмотрено в объектных моделях приложений
 Даже в нашем примере используются две встроенные .(݂݂ܱ݁ܿ݅	ܵܯ
функции: ݁ݐܽܦሺ┤ሻ, которая возвращает текущую дату по часам ком-
пьютера и ݀݀ܣ݁ݐܽܦሺ┤ሻ, которая умеет прибавлять к текущей дате
определённое количество дней, недель, месяцев, лет и т.п.

В ܸܣܤ имеются также процедуры обработки событий
 ,специального назначения ܾݑܵ процедуры типа – (݁ݎݑ݀݁ܿ݋ݎ݌	ݐ݊݁ݒ݁)

91

которые выполняются в случае возникновении определённого собы-
тия. Про события подробнее будет рассказано в разделе 6.2.

Есть ещё процедуры типа ܲݕݐݎ݁݌݋ݎ (процедуры свойства). Они
нужны для определения свойств создаваемого вами класса.

4.2.2. Редактор ࡭࡮ࢂ: получение списка свойств и методов,

список параметров, автоматическое дополнение слов

В редактор кода встроено множество средств, которые облег-
чают жизнь разработчику. Ниже перечислены наиболее важные из
них.

Самое полезное средство – это получение списка свойств и ме-
тодов. В большинстве ܸܣܤ-программ используются свойства и ме-
тоды различных объектов, при этом многие методы принимают пара-
метры. Помнить точное название каждого свойства и метода, очерёд-
ность передачи параметров невозможно, а разыскивать каждый раз
справку по этому объекту в документации – непроизводительная
трата времени. Пользоваться очень просто: если включён автомати-
ческий показ (он включён по умолчанию), то достаточно впечатать
имя объекта и за ним – точку. Если автопоказ отключён, то можно
воспользоваться командой ݐݏ݅ܮ	ݏ݀݋݄ݐ݁ܯ/ݏ݁݅ݐݎ݁݌݋ݎܲ в меню ݐ݅݀ܧ или
нажать ݈ݎݐܥ ൅ Выбрав нужное свойство/метод (можно впечатать .ܬ
первые несколько букв или воспользоваться мышью), нужно нажать
на клавишу ܾܶܽ. Это средство работает и для ваших классов/пере-
менных. Если не работает, проверить настройки параметра
	ݏ݈݋݋ܶ меню) ݏ݊݋݅ݐ݌ܱ в диалоговом окне ݏݎܾ݁݉݁ܯ	ݐݏ݅ܮ	݋ݐݑܣ →
 .(ݏ݊݋݅ݐ݌ܱ	

Получить список аргументов для метода и информацию о них
можно автоматически после того, как вы напечатали имя метода, при-
нимающего параметры. Вручную вызвать при помощи ݈ݎݐܥ ൅ -вклю ,ܫ
чить/отключить можно при помощи ܶݏ݈݋݋	ݏ݊݋݅ݐ݌ܱ → .݋݂݊ܫ	݇ܿ݅ݑܳ	݋ݐݑܣ
݈ݎݐܥ ൅ ݐ݂݄݅ܵ ൅ -информация о параметрах, показывает список аргу – ܫ
ментов для самой внешней функции (в случае вложенности).

Получение списка констант (то есть допустимых значений для
данного свойства) также появляется автоматически после того, как
вы впечатаете знак равенства ሺൌሻ. Можно воспользоваться также
комбинацией ݈ݎݐܥ ൅ ݐ݂݄݅ܵ ൅ .ܬ

92

Ключевые слова ܸ -и имена доступных в данный момент клас ܣܤ
сов очень удобно вводить при помощи автоматического дополнения
слов (݁ݐ݈݁݌݉݋ܥ	݀ݎ݋ܹ). Для этого достаточно нажать на ݈ݎݐܥ ൅ Пробел.
Можно предварительно ничего не печатать, а можно впечатать одну
– две буквы.

Ещё несколько моментов, связанных с редактором кода:

 если вы напечатаете одну строку кода с отступом, то тот же
отступ будет установлен для следующих строк. Изменить по-
ведение можно при помощи параметра ݋ݐݑܣ	ݐ݊݁݀݊ܫ в том же
диалоговом окне ܱݏ݊݋݅ݐ݌;

 если редактор кода распознает ключевое слово, он автомати-
чески делает его первую букву заглавной и выделяет синим
цветом;

 часто бывает необходимо закомментировать или раскоммен-
тировать несколько строк сразу. Для этой цели можно вклю-
чить отображение панели инструментов ݐ݅݀ܧ и воспользо-
ваться кнопками ݐ݊݁݉݉݋ܥ	݇ܿ݋݈ܤ и ܷ݊ܿݐ݊݁݉݉݋	݇ܿ݋݈ܤ;

 если при создании процедуры вы пишете ключевое слово ܾܵݑ
или ݊݋݅ݐܿ݊ݑܨ, то редактор кода автоматически дописывает
оператор ݀݊ܧ	ܾݑܵ или ݀݊ܧ	݊݋݅ݐܿ݊ݑܨ. Между процедурами
вставляется строка-разделитель;

 если при переходе на новую строку редактор кода обнаружит
синтаксическую ошибку, то вам будет выдано предупрежде-
ние. Отменить протесты редактора можно, сняв флажок
 Работе .ݏ݊݋݅ݐ݌ܱ в том же диалоговом окне ݄݇ܿ݁ܥ	ݔܽݐ݊ݕܵ	݋ݐݑܣ
это сильно не помешает, потому что синтаксически неверные
строки в любом случае будут автоматически выделяться
красным цветом;

 в редакторе ܸ݈݅ܽݑݏ	ܿ݅ݏܽܤ вполне допускается работа сразу с
несколькими окнами редактирования кода. Переход между
ними – по ݈ݎݐܥ ൅ ܾܶܽ или ݈ݎݐܥ ൅ ;6ܨ

 по умолчанию редактор кода работает в режиме
-который показывает содержимое всего мо ݓܸ݁݅	݈݁ݑ݀݋ܯ	݈݈ݑܨ
дуля. Если вы хотите просматривать процедуры по отдельно-
сти, то переключитесь в режим ܲ݁ݎݑ݀݁ܿ݋ݎ	ݓܸ݁݅. Кнопки для
переключения – в левом нижнем углу окна редактора кода.

93

4.2.3. Разделы справки ࡭࡮ࢂ, приёмы нахождения нужной

информации

Работа со справкой по программированию в ܵܯ	ܱ݂݂݅ܿ݁ не так
очевидна, как может показаться на первый взгляд.

Вызов окна справки производится из редактора кода
-Второй вариант – воспользо .1ܨ при нажатии на кнопку ܿ݅ݏܽܤ	݈ܽݑݏܸ݅
ваться кнопкой Справка на панели инструментов ܵ݀ݎܽ݀݊ܽݐ.

Ещё одна возможность вызвать справку – установить указатель
мыши в нужное место в окне редактора кода (например, на имя вы-
зываемого метода или используемого свойства) и нажать на кнопку
-Преимуществом такого подхода является то, что при наличии не .1ܨ
скольких вариантов (например, объект ܴܽ݊݃݁ и свойство ܴܽ݊݃݁) вам
автоматически открывается нужный.

Справка по программированию в приложении ݐ݂݋ݏ݋ݎܿ݅ܯ	ܱ݂݂݅ܿ݁
обычно состоит из трёх частей:

 первая часть Microsoft Excel Visual Basic Reference, Mi-
crosoft Word Visual Basic Reference и т.п.) – это справка по
объектной модели самого приложения ܵܯ	ܱ݂݂݅ܿ݁;

 вторая часть (ݐ݂݋ݏ݋ݎܿ݅ܯ	݈ܽݑݏܸ݅	ܿ݅ݏܽܤ	݊݋݅ݐܽݐ݊݁݉ݑܿ݋ܦ, она
одинакова во всех приложениях ܵܯ	ܱ݂݂݅ܿ݁) – это справка
по синтаксису и встроенным функциям самого языка
 ;݊݋݅ݐ݈ܽܿ݅݌݌ܣ	ݎ݋݂	ܿ݅ݏܽܤ	݈ܽݑݏܸ݅

 третья часть (ݐ݂݋ݏ݋ݎܿ݅ܯ	݂݂ܱ݁ܿ݅	݈ܽݑݏܸ݅	ܿ݅ݏܽܤ	݁ܿ݊݁ݎ݂ܴ݁݁, она
также одинакова во всех приложениях ܵܯ	ܱ݂݂݅ܿ݁) – это
справка по общим возможностям приложений ܵܯ	ܱ݂݂݅ܿ݁:
программная работа с панелями инструментов и меню, ра-
бота с помощником, организация взаимодействия с
 .и т.п ݏ݁ܿ݅ݒݎ݁ܵ	ݐ݊݅݋ܲ݁ݎ݄ܽܵ	ݏݓ݋ܹ݀݊݅

В некоторых приложениях (например, ݐ݂݋ݏ݋ݎܿ݅ܯ	ݏݏ݁ܿܿܣ) в
справку добавлены дополнительные части – по объектной модели
 .и т.п ܮܳܵ по языку ,ܱܦܣ

Обычно самая важная часть – это часть, которая посвящена
возможностям конкретного приложения ܵܯ	ܱ݂݂݅ܿ݁. Её условно можно
разделить на две главные части:

94

 ܲ݃݊݅݉݉ܽݎ݃݋ݎ	ݏݐ݌݁ܿ݊݋ܥ (концепции программирования) – в
ней рассказывается, как программным образом выполнять
самые распространённые операции. Например, для ݈݁ܿݔܧ
это возможность создать или открыть рабочую книгу,
найти нужный лист, получить или записать информацию в
ячейку и т.п.

 справка по компонентам объектной модели приложения
 коллекциям, объектам, свойствам и методам и :݂݂ܱ݁ܿ݅	ܵܯ
т.п. При этом самые важные моменты, которые относятся
скорее к области концепций (какими способами, например,
можно создать объект ܴܽ݊݃݁ в ݈݁ܿݔܧ) приводятся в
справке по соответствующему объекту. Представление
обо всех функциональных возможностях данного объекта
можно получить, только просмотрев подряд все его свой-
ства и методы.

Найти направление, то есть объект, его свойства и методы,
можно тремя способами:

1. Просмотреть раздел ܲ݃݊݅݉݉ܽݎ݃݋ݎ	ݏݐ݌݁ܿ݊݋ܥ (концепции про-
граммирования) в справке – не описана ли там наша ситуа-
ция.

2. Просто просматривать все подряд объекты, свойства и ме-
тоды в справке, пытаясь догадаться, что нам может помочь.
Это самый неэффективный способ, поскольку объектов в лю-
бом приложении ܵܯ	ܱ݂݂݅ܿ݁ сотни (часто используемых –
намного меньше). Однако если вам предстоит в течение дол-
гого времени заниматься программированием в каком-либо
приложении ܵܯ	ܱ݂݂݅ܿ݁, то есть смысл потратить несколько
дней, чтобы подряд читать справку по всем объектам, кон-
спектируя самые важные моменты. Гарантируется, что вы
узнаете множество таких возможностей, о которых раньше и
не подозревали.

3. Наиболее разумный способ – выполнить нужные вам опера-
ции в макрорекордере и потом проанализировать созданный
им код. Однако, к сожалению, гарантировать то, что макроре-
кордер покажет вам самый эффективный путь, невозможно.

95

И напомним ещё один момент: справки по Visual Basic for Appli-
cation на русском языке, к сожалению, не существует.

Контрольные вопросы к главе 4

1. Какой алфавит используется в языках программирования?
2. Что такое идентификатор?
3. Какова максимальная длина идентификатора?
4. Для чего нужны комментарии?
5. Какова структура программы на ܲܽܶܧܰ.ܥܤܣ݈ܽܿݏ?
6. Для чего используются метки?
7. Что такое переменная?
8. Что хранит переменная?
9. Каков размер переменной?
10. Как происходит автовыведение типа переменной?
11. Какова структура программы в ܸܣܤ?
12. Для чего нужен раздел объявлений уровня модуля?
13. Что такое раздел методов модуля?
14. Что такое контейнер ܴ݂݁݁ݏ݁ܿ݊݁ݎ?
15. Максимальная длина имени переменной в ܸܣܤ?
16. Каким оператором явно объявляются переменные в ܸܣܤ?
17. Для чего используются процедуры и функции в ܸܣܤ?
18. Как работать в редакторе кода ܸܣܤ?
19. Как пользоваться разделами справки ܸܣܤ?
20. На каком языке составлены разделы справки ܸܣܤ?

96

Глава 5. РАЗНОВИДНОСТИ СТРУКТУР АЛГОРИТМОВ

По структуре алгоритмы разделяют на линейные, разветвляю-
щиеся и циклические.

5.1. Простые типы данных для переменных и констант
 (ࢀࡱࡺ.࡯࡮࡭࢒ࢇࢉ࢙ࢇࡼ)

Целые типы

Ниже приводится таблица целых типов (табл. 8), содержащая
также их размер и диапазон допустимых значений.

Таблица 8

Таблица целых типов (PascalABC.NET)

Тип Размер,
байт

Диапазон значений

Shortint 1 -128..127
Smallint 2 -32768..32767
integer,
longint

4 -2147483648..2147483647

int64 8 -9223372036854775808..9223372036854775807
byte 1 0..255
word 2 0..65535

longword,
cardinal

4 0..4294967295

uint64 8 0..18446744073709551615
BigInteger Пере-

менный
Неограниченный

Типы ݅݊ݎ݁݃݁ݐ и ݈ݐ݊݅݃݊݋, а также ݈݀ݎ݋ݓ݃݊݋ и ݈ܿܽܽ݊݅݀ݎ являются
синонимами.

Максимальные значения для каждого целого типа определены
как внешние стандартные константы: ݐ݊ܫ݈݈ܽ݉ܵݔܽܯ ,ݐ݊ܫݔܽܯ ,64ݐ݊ܫݔܽܯ,
 .݁ݐݕܤݔܽܯ ,݀ݎ݋ܹݔܽܯ ,݀ݎ݋ܹ݃݊݋ܮݔܽܯ ,64ݐ݊ܫܷݔܽܯ ,ݐ݊ܫݐݎ݋݄ܵݔܽܯ

Для каждого целого типа ܶ, кроме ݎ݁݃݁ݐ݊ܫ݃݅ܤ, определены сле-
дующие константы как статические члены:

-константа, представляющая минимальное значе – ݁ݑ݈ܸܽ݊݅ܯ.ܶ

ние типа ܶ;

-константа, представляющая максимальное значе – ݁ݑ݈ܸܽݔܽܯ.ܶ

ние типа ܶ.

97

Для каждого целого типа ܶ определены статические функции:

ܶ. -ሻ – функция, конвертирующая строковое представлеݏሺ݁ݏݎܽܲ

ние числа в значение типа ܶ. Если преобразование невозможно, то

генерируется исключение;

ܶ. ,ݏሺ݁ݏݎܽܲݕݎܶ -ሻ – функция, конвертирующая строковое предݏ݁ݎ

ставление числа в значение типа ܶ и записывающая его в перемен-

ную ݏ݁ݎ. Если преобразование возможно, то возвращается значение

 .݁ݏ݈ܽܨ – в противном случае ,݁ݑݎܶ

Кроме того, для ܶ определена экземплярная функция ܶ݃݊݅ݎݐܵ݋,

возвращающая строковое представление переменной данного типа.

Константы целого типа могут представляться как в десятичной,

так и в шестнадцатеричной форме, перед шестнадцатеричной кон-

стантой ставится знак. Диапазон шестнадцатеричных констант:

$0000 0000 .. $FFFF FFFF.

Стандартные константы и переменные

Ниже приведены: в табл.9 – сводка стандартных констант и их
размеры; в табл. 10 – стандартные переменные; в табл. 11 – сводка
вещественных типов, используемых в PascalABC.NET.

Таблица 9

Стандартные константы (PascalABC.NET)

Имя константы и ее тип Размерность
1 2

MaxShortInt = shortint.MaxValue; Максимальное значение типа
shortint

MaxByte = byte.MaxValue; Максимальное значение типа byte
MaxSmallInt = smallint.MaxValue; Максимальное значение типа

smallint
MaxWord = word.MaxValue; Максимальное значение типа word
MaxInt = integer.MaxValue; Максимальное значение типа

integer
MaxLongWord = longword.MaxValue; Максимальное значение типа

longword
MaxInt64 = int64.MaxValue; Максимальное значение типа int64

98

Продолжение табл. 9

1 2
MaxUInt64 = uint64.MaxValue; Максимальное значение типа

uint64
MaxDouble = real.MaxValue; Максимальное значение типа

double
MinDouble = real.Epsilon; Минимальное положительное зна-

чение типа double
MaxReal = real.MaxValue; Максимальное значение типа real

MinReal = real.Epsilon; Минимальное положительное зна-
чение типа real

MaxSingle = single.MaxValue; Максимальное значение типа
single

MinSingle = single.Epsilon; Минимальное положительное зна-
чение типа single

Pi = 3.141592653589793; Константа Pi
E = 2.718281828459045; Константа E

NewLine: string; Константа перехода на новую
строку

Таблица 10

Стандартные переменные (PascalABC.NET)

Имя переменной Применение
output Стандартный текстовый файл вы-

вода. По умолчанию связан с экраном,
но может быть переназначен процеду-
рой ݊݃݅ݏݏܣ

input Стандартный текстовый файл ввода.
По умолчанию связан с клавиатурой,
но может быть переназначен процеду-
рой ݊݃݅ݏݏܣ

Вещественные типы

Таблица 11

Таблица вещественных типов (PascalABC.NET)

Тип Размер,
байт

Количество
значащих цифр

Диапазон значений

Real 8 15-16 -1.8·10308 .. 1.8·10308
Double 8 15-16 -1.8·10308 .. 1.8·10308
Single 4 7-8 -3.4·1038 .. 3.4·1038

Decimal 16 30 -79228162514264337593543950335 ..
79228162514264337593543950335

99

Типы ݈ܽ݁ݎ и ݈ܾ݀݁ݑ݋ являются синонимами. Самое маленькое по-

ложительное число типа ݈ܽ݁ݎ приблизительно равно 5.0·10-324, для

типа ݈݁݃݊݅ݏ оно составляет приблизительно 1.4·10-45.

Максимальные значения для каждого вещественного типа опре-

делены как внешние стандартные константы: ݈ܾ݁ݑ݋ܦݔܽܯ ,݈ܴܽ݁ݔܽܯ и

 .݈݁݃݊݅ܵݔܽܯ

Для каждого вещественного типа ܴ кроме ݈݀݁ܿ݅݉ܽ определены
также следующие константы как статические члены класса:

-константа, представляющая минимальное значе – ݁ݑ݈ܸܽ݊݅ܯ.ܴ

ние типа ܴ;

-константа, представляющая максимальное зна – ݁ݑ݈ܸܽݔܽܯ.ܴ

чение типа ܴ;

ܴ. -константа, представляющая самое маленькое поло – ݊݋݈݅ݏ݌ܧ

жительное число типа ܴ;

ܴ.ܰܽܰ – константа, представляющая не число (возникает,
например, при делении 0/0);

-константа, представляющая отрицатель – ݕݐ݂݅݊݅݊ܫ݁ݒ݅ݐܽ݃݁ܰ.ܴ

ную бесконечность (возникает, например, при делении ሺെ2ሻ/0);

ܴ. -константа, представляющая положитель – ݕݐ݂݅݊݅݊ܫ݁ݒ݅ݐ݅ݏ݋ܲ

ную бесконечность (возникает, например, при делении 2/0).

Для каждого вещественного типа ܴ кроме ݈݀݁ܿ݅݉ܽ определены
следующие статические функции:

ܴ. хранится значение ݎ если в ,݁ݑݎܶ ሻ – возвращаетݎሺܰܽܰݏܫ

ܴ.ܰܽܰ и ݁ݏ݈ܽܨ в противном случае;

ܴ. ܶ ሻ – возвращаетݎሺݕݐ݂݅݊݅݊ܫݏܫ хранится ݎ если в параметре ,݁ݑݎ

значение ܴ. ݁ݏ݈ܽܨ и значение ݕݐ݂݅݊݅݊ܫ݁ݒ݅ݐܽ݃݁ܰ.ܴ или ݕݐ݂݅݊݅݊ܫ݁ݒ݅ݐ݅ݏ݋ܲ
в противном случае;

ܴ. ݎ если в параметре ,݁ݑݎܶ ሻ – возвращаетݎሺݕݐ݂݅݊݅݊ܫ݁ݒ݅ݐ݅ݏ݋ܲݏܫ
хранится значение ܴ. в противном ݁ݏ݈ܽܨ и значение ݕݐ݂݅݊݅݊ܫ݁ݒ݅ݐ݅ݏ݋ܲ
случае;

ܴ. ݎ если в параметре ,݁ݑݎܶ ሻ – возвращаетݎሺݕݐ݂݅݊݅݊ܫ݁ݒ݅ݐܽ݃݁ܰݏܫ

100

хранится значение ܴ.ܰ݁݃ܽݕݐ݂݅݊݅݊ܫ݁ݒ݅ݐ и значение ݁ݏ݈ܽܨ в противном
случае.

Для каждого вещественного типа ܴ определены следующие
статические функции:

ܴ. -ሻ – функция, конвертирующая строковое представлеݏሺ݁ݏݎܽܲ

ние числа в значение типа ܴ. Если преобразование невозможно, то
генерируется исключение;

ܴ. ,ݏሺ݁ݏݎܽܲݕݎܶ -ሻ – функция, конвертирующая строковое предݏ݁ݎ

ставление числа в значение типа ܴ и записывающая его в перемен-

ную ݏ݁ݎ. Если преобразование возможно, то возвращается значение

 .݁ݏ݈ܽܨ в противном случае ,݁ݑݎܶ

Кроме того, определена экземплярная функция ܶ݃݊݅ݎݐܵ݋, воз-

вращающая строковое представление переменной типа ܴ.

Вещественные константы можно записывать как в форме с пла-
вающей точкой, так и в экспоненциальной форме: 1.7 0.013 2.5e3
(2500) 1.4e-1 (0.14)

Логический тип

Значения логического типа ܾ݈݊ܽ݁݋݋ занимают 1 байт и прини-
мают одно из двух значений, задаваемых предопределёнными кон-

стантами ܶ݁ݑݎ (истина) и ݁ݏ݈ܽܨ (ложь).

Для логического типа определены статические методы:

.݈݊ܽ݁݋݋ܾ -ሻ – функция, конвертирующая строковое предݏሺ݁ݏݎܽܲ

ставление числа в значение типа ܾ݈݊ܽ݁݋݋. Если преобразование не-
возможно, то генерируется исключение;

.݈݊ܽ݁݋݋ܾ ,ݏሺ݁ݏݎܽܲݕݎܶ ሻ – функция, конвертирующая строковоеݏ݁ݎ
представление числа в значение типа ܾ݈݊ܽ݁݋݋ и записывающая его в
переменную ݏ݁ݎ. Если преобразование возможно, то возвращается
значение ܶ݁ݑݎ, в противном случае ݁ݏ݈ܽܨ.

Кроме этого, определена экземплярная функция ܶ݃݊݅ݎݐܵ݋, воз-
вращающая строковое представление переменной типа ܾ݈݊ܽ݁݋݋.

Логический тип является порядковым. В частности, ݁ݏ݈ܽܨ ൏
ሻ݁ݏ݈ܽܨሺ݀ݎܱ ,݁ݑݎܶ ൌ ሻ݁ݑݎሺܶ݀ݎܱ ,0 ൌ 1.

101

Символьный тип

Символьный тип ݄ܿܽݎ занимает 2 байта и хранит ܷ݊݅ܿ݁݀݋-сим-

вол. Символы реализуются типом ܵ݉݁ݐݏݕ. .платформы .NET ݎ݄ܽܥ

Операция + для символов означает конкатенацию (слияние)

строк. Например: ′ܽ^′	 ൅ ^′	ܾ^′ ൌ ሺ_^′	ܽ	ܾ^′. Как и для строк, если к сим-
волу прибавить число, то число предварительно преобразуется к
строковому представлению:

var s: string := ' '+15; s = ' 15'
var s1: string := 15+' '; s = '15 '

Над символами определены операции сравнения ൏	൐	൏ൌ	൐ൌ	ൌ
	൏൐, которые сравнивают коды символов:

'a'<'b' True
'2'<'3' True

Для преобразования между символами и их кодами в кодировке

 :݀ݎܱ и ݎ݄ܥ 1251ሻ используются стандартные функцииܲܥሺ	ݏݓ݋ܹ݀݊݅

݊ ሺ݊ሻ – функция, возвращающая символ с кодомݎ݄ܥ в кодировке
Windows;

-пред ,݁ݐݕܾ ሺсሻ – функция, возвращающая значение типа݀ݎܱ
ставляющее собой код символа c в кодировке Windows.

Для преобразования между символами и их кодами в кодировке

 и ݁݀݋ܷܿ݅݊ݎ݄ܥ используются стандартные функции ݁݀݋ܷܿ݅݊

 :݁݀݋ܷܿ݅݊݀ݎܱ

 ሻ – возвращает символ с кодом w в кодировкеݓሺ݁݀݋ܷܿ݅݊ݎ݄ܥ

 ;݁݀݋ܷܿ݅݊

-представляю ,݀ݎ݋ݓ ሺсሻ – возвращает значение типа݁݀݋ܷܿ݅݊݀ݎܱ

щее собой код символа c в кодировке ܷ݊݅ܿ݁݀݋.

Кроме того, выражение #число возвращает ܷ݊݅ܿ݁݀݋-символ с
кодом «число» (число должно находиться в диапазоне от 0 до 65535).

Аналогичную роль играют явные преобразования типов:

 ;݁݀݋ܷܿ݅݊ ሻ – возвращает символ с кодом w в кодировкеݓሺݎ݄ܽܿ

 .݁݀݋ܷܿ݅݊ ሺсሻ – возвращает код символа c в кодировке݀ݎ݋ݓ

102

В табл.12 приведена сводка методов статического класса char.

Таблица 12

Методы статического класса char (PascalABC.NET)

Метод Описание
char.IsDigit(c: char): boolean Возвращает, является ли символ

цифрой
char.IsLetter(c: char): boolean Возвращает, является ли символ

буквой
char.IsWhiteSpace(c: char): boolean Возвращает, является ли символ

пробельным
char.IsUpper(c: char): boolean Возвращает, является ли символ

буквой в верхнем регистре
char.IsLower(c: char): boolean Возвращает, является ли символ

буквой в нижнем регистре
char.IsPunctuation(c: char): boolean Возвращает, является ли символ

знаком препинания
char.IsLetterOrDigit(c: char): boolean Возвращает, является ли символ

буквой или цифрой
char.ToLower(c: char): char Возвращает символ, преобразо-

ванный к нижнему регистру
char.ToUpper(c: char): char Возвращает символ, преобразо-

ванный к верхнему регистру

Перечислимый и диапазонный типы

Перечислимый тип определяется упорядоченным набором
идентификаторов:

type typeName = (value1, value2, ..., valuen);

Значения перечислимого типа занимают 4 байта. Каждое значе-
ние ݁ݑ݈ܽݒ представляет собой константу типа ݁݉ܽܰ݁݌ݕݐ, попадаю-
щую в текущее пространство имён.

Пример 5.1.

type
 Season = (Winter,Spring,Summer,Autumn);
 DayOfWeek = (Mon,Tue,Wed,Thi, Fri, Sat, Sun);

К константе перечислимого типа можно обращаться непосред-

ственно по имени, а можно использовать запись ݁݉ܽܰ݁݌ݕݐ. в ,݁ݑ݈ܽݒ
которой имя константы уточняется именем перечислимого типа, к ко-
торому она принадлежит:

103

Var a: DayOfWeek;
a := Mon;
a := DayOfWeek.Wed;

Значения перечислимого типа можно сравнивать на ൏:

DayOfWeek.Wed < DayOfWeek.Sat

Для значений перечислимого типа можно использовать функ-
ции ܱ݀݁ݎܲ ,݀ݎ и ܵܿܿݑ, а также процедуры ܿ݊ܫ и ܿ݁ܦ. Функция ܱ݀ݎ воз-
вращает порядковый номер значения в списке констант соответству-
ющего перечислимого типа, нумерация при этом начинается с нуля.

Для перечислимого типа определена экземплярная функция
-возвращающая строковое представление переменной пе ,݃݊݅ݎݐܵ݋ܶ
речислимого типа. При выводе значения перечислимого типа с помо-
щью процедуры ݁ݐ݅ݎݓ также выводится строковое представление
значения перечислимого типа.

Пример 5.2.

type
 Season = (Winter,Spring,Summer,Autumn);
var s: Season;
begin
 s := Summer;

 writeln(s.ToString); Summer
 writeln(s); Summer
end.

Диапазонный тип представляет собой подмножество значе-
ний целого, символьного или перечислимого типа и описывается в

виде ܽ. . ܾ, где ܽ - нижняя, ܾ - верхняя граница интервального типа,

ܽ ൏ ܾ:

Var
 intI: 0..10;
 intC: 'a'..'z';
 intE: Mon..Thi;

Тип, на основе которого строится диапазонный тип, называется
базовым для этого диапазонного типа. Значения диапазонного типа
занимают в памяти столько же, сколько и значения соответствующего
базового типа.

Строковый тип

Строки имеют тип ݃݊݅ݎݐݏ, состоят из набора последовательно
расположенных символов char и используются для представления
текста.

104

Строки могут иметь произвольную длину. К символам в строке
можно обращаться, используя индекс: ݏሾ݅ሿ обозначает ݅-й символ в

строке, нумерация начинается с единицы. Если индекс ݅ выходит за
пределы длины строки, то генерируется исключение.

Над строками определены операции сравнения: ൏		൐,൏ൌ,൐ൌ,ൌ,	
	൏൐. Сравнение строк на неравенство осуществляется лексикографи-

чески: 1ݏ	 ൏ -если для первого несовпадающего символа с номе ,2ݏ	

ром ݅	1ݏሾ݅ሿ ൏ .2ݏ короче 1ݏ 2ሾ݅ሿ или все символы строк совпадают, ноݏ

Операция ൅ для строк означает конкатенацию (слияние) строк.

Например: ′Петя^′	 ൅ ^′	Маша^′ ൌ ሺ_^′	ПетяМаша^′.

Расширенный оператор присваивания ൅ൌ для строк добавляет
в конец строки - левого операнда строку – правый операнд.

Пример 5.3.

var s: string := 'Петя';
s += 'Маша'; s = 'ПетяМаша'

Строка может складываться с числом, при этом число предва-
рительно преобразуется к строковому представлению:

s := 'Ширина: '+15; s = 'Ширина: 15'
s := 20.5+''; s = '20.5'
s += 1; s = '20.51'

Над строками и целыми числами определена операция *: ݏ ∗ ݊ и
݊ ∗ :означает строку, образованную из строки s, повторенной n раз ݏ

s := '*'*10; s = '**********'
s := 5*'ab'; s = 'ababababab'
s := 'd'; s *= 3; s = 'ddd'

Строки реализуются типом ܵ݉݁ݐݏݕ. . платформы ݃݊݅ݎݐܵ и ܶܧܰ
представляют собой ссылочный тип. Таким образом, все операции
над строками унаследованы от типа ܵ݉݁ݐݏݕ. -Однако, в отли .݃݊݅ݎݐܵ
чие от . ,изменяемы. Например ܶܧܰ.ܥܤܣ݈ܽܿݏܽܲ строк, строки в - ܶܧܰ
можно изменить ݏሾ݅ሿ (в . в ݃݊݅ݎݐݏ нельзя). Более того, строки ܶܧܰ
 ведут себя как размерные: после ܶܧܰ.ܥܤܣ݈ܽܿݏܽܲ

var s2 := 'Hello';
var s1 := s2;
s1[2] := 'a';

105

строка 2ݏ	не изменится. Аналогично при передаче строки по значе-
нию в подпрограмму создается копия строки, т.е. обеспечивается по-
ведение, характерное для ݄݅݌݈݁ܦ	ݐ݆ܾܱܿ݁	݈ܽܿݏܽܲ, а не для . .ܶܧܰ

Однако строке можно присвоить ݈݊݅6, что необходимо для ра-
боты с ܰܶܧ-кодом.

Кроме того, в ܲܽܶܧܰ.ܥܤܣ݈ܽܿݏ реализованы размерные строки.
Для их описания используется тип ݃݊݅ݎݐݏሾ݊ሿ, где ݊ - константа целого
типа, указывающая длину строки. Размерные строки, в отличие от
обычных, можно использовать как компоненты типизированных фай-
лов. Для совместимости с ݄݅݌݈݁ܦ	ݐ݆ܾܱܿ݁	݈ܽܿݏܽܲ в стандартном модуле
описан тип ݃݊݅ݎݐݏݐݎ݋݄ݏ ൌ .ሾ255ሿ݃݊݅ݎݐݏ

5.2. Запись данных в память, или оператор присваивания
 (ࢀࡱࡺ.࡯࡮࡭࢒ࢇࢉ࢙ࢇࡼ)

В предыдущем параграфе вам фактически предложено рабо-
тать с данными трёх типов: целыми, вещественными и строковыми.
Следует запомнить:

 целые числа в программах записываются так же, как принято
в математике. Например: 345, -12222;

 вещественные числа могут записываться двумя способами:
первый – аналогичный математической записи: -123.234,
92929.3456 (обратите внимание, что здесь используется де-
сятичная точка, а не запятая), второй – в так называемом
«плавающем» виде (правильное название: «десятичное
число с плавающей точкой»). Например, число 1,23•1012 мо-
жет быть записано следующим образом: 1.23Е+12. Здесь Е ൅
12 читается как «умножить на десять в двенадцатой степени»;

 строки представляют собой произвольный набор символов,
заключённых в апострофы:

’Какой чудесный был пирог. Я от него ... 2+2=5’

Оператор присваивания предназначен для указания компью-
теру ЗАПИСИ ДАННЫХ В КОНКРЕТНЫЙ БЛОК ПАМЯТИ. Общий вид
оператора:

6 Зарезервированное слово nil представляет собой специальное значение переменной-указа-
теля, не указывающей ни на что конкретное.

106

<имя блока памяти>≔<выражение>

Обратите внимание на знак присваивания – он состоит из двух

значков: двоеточия и равно (: ൌ), которые записываются друг за дру-
гом без пробелов.

5.3. Арифметические операции, функции, выражения.
Арифметический оператор присваивания

 (ࢀࡱࡺ.࡯࡮࡭࢒ࢇࢉ࢙ࢇࡼ)

К арифметическим типам данных относятся группы веществен-
ных и целых типов. К ним применимы арифметические операции и
операции отношений.

Выражение – это конструкция, возвращающая значение некото-
рого типа. Простыми выражениями являются переменные и кон-
станты, например: 3.14, x, a12.

Более сложные выражения строятся из простых с помощью опе-
раций, вызовов функций и скобок. Данные, к которым применяются
операции, называются операндами.

В ܲ ,	@ :имеются следующие операции ܶܧܰ.ܥܤܣ݈ܽܿݏܽ ,div ,/ ,* ,ݐ݋݊
,൅,െ ,ݎ݄ݏ ,݈݄ݏ ,݀݊ܽ ,݀݋݉ ,ൌ,൐,൏,൏൐,൏ൌ,൐ൌ ,ݎ݋ݔ ,ݎ݋ ൌ൐, а ,݊݅ ,ݏ݅ ,ݏܽ
также операция ݊݁ݓ и операция приведения типа.

Операции @,െ,൅, ሺ_^, -операция приведения типа и опера ,ݐ݋݊
ция ݊݁ݓ являются унарными (имеют один операнд), остальные явля-
ются бинарными (имеют два операнда), операции ൅ и െ являются и
бинарными, и унарными. Унарная арифметическая операция одна.
Это операция изменения знака. Её формат െвеличина.

Порядок выполнения операций определяется их приоритетом.
В языке ܲܽܶܧܰ.ܥܤܣ݈ܽܿݏ четыре уровня приоритетов операций, зада-
ваемых таблицей приоритетов.

Для типов, определённых пользователем, ряд операций можно
перегружать.

К арифметическим относятся бинарные операции ൅,െ, ∗,	 / для
вещественных и целых чисел, бинарные операции ݀݅ݒ и ݉݀݋ для це-
лых чисел и унарные операции ൅ и െ для вещественных и целых чи-
сел. Тип выражения ݔ	݌݋	ݕ, где ݌݋ – знак бинарной операции ൅, െ или
∗, определяется из табл. 13.

107

Таблица 13

Бинарные арифметические операции*

Знак Выражение Тип операндов Тип результа-
тов

Операция

ܣ + ൅ ,ܴ ܤ ܴ
,ܫ ܫ

,ܫ ܴ; ܴ, ܫ

ܴ
 ܫ
ܴ

Сложение

ܣ - െ ,ܴ ܤ ܴ
,ܫ ܫ

,ܫ ܴ; ܴ, ܫ

ܴ
 ܫ
ܴ

Вычитание

ܣ * ∗ ,ܴ ܤ ܴ
,ܫ ܫ

,ܫ ܴ; ܴ, ܫ

ܴ
 ܫ
ܴ

Умножение

ܣ / ⁄ ,ܴ ܤ ܴ
,ܫ ܫ

,ܫ ܴ; ܴ, ܫ

ܴ
ܴ
ܴ

Деление

ݒ݅݀	ܣ ݒ݅݀ ,ܫ ܤ Целое деление ܫ ܫ
,ܫ ܤ	݀݋݉	ܣ ݀݋݉ -Остаток от це ܫ ܫ

лого деления

Примечание.*ܫ обозначает целые типы, ܴ – вещественные тип.

В соответствии со структурой программы на ܲܽܶܧܰ.ܥܤܣ݈ܽܿݏ
(см. раздел 4.1) напишем первую полноценную программу на

 .ܶܧܰ.ܥܤܣ݈ܽܿݏܽܲ

Пример 5.4.

program example1; {заголовок программы}
 var num : integer; {резервирование блока памяти для хранения

целого числа}
 day : byte; {резервирование блока памяти для хранения

целого числа от 0 до 255}
 name : string; {резервирование блока памяти для хранения

строки}
Begin
 num:=355; {запись в блок num числа 355}
 day:=31; {запись в блок day числа 31}
 name:=’Скорпион’ {запись в блок name слова «Скорпион»}
end.

К арифметическим величинам могут быть применены стандарт-
ные функции ܲܽܶܧܰ.ܥܤܣ݈ܽܿݏ. Функция выступает как операнд в вы-
ражении. Например, в следующем операторе присваивания:

x ≔ 2 ∗ SinሺAሻ ⁄ Lnሺ3.5ሻ 	൅ CosሺC െ Dሻ

108

операндами являются три функции: ݏ݋ܿ ,݈݊ ,݊݅ݏ. Их запись такая же,
как в математике. Аргументы называются фактическими парамет-
рами и являются в общем случае выражениями арифметического
типа. Аргументы записываются в круглых скобках. Результат вычис-
ления функции – величина соответствующего типа.

Как следует из определения оператора присваивания, в правой
части оператора присваивания находится некое значение или выра-
жение. В последнем случае в блок памяти (переменную) записыва-
ется значение выражения.

Пример 5.5.

program example2; {заголовок программы}
 var num : integer; {резервирование блока памяти для хранения

целого числа}
 day : byte; {резервирование блока памяти для хранения

целого числа от 0 до 255}
Begin
 num:=355 + 145; {запись в блок num числа 500}
 day:=num - 469; {при вычислении значения выражения вме-

сто num будет подставлено значение из
этого блока памяти (500) и вы
числен результат (31)}

end.

В табл. 14 и табл. 15 приведена сводка бинарных операций для
различного типа данных.

Таблица 14

Бинарные операции для всех простых типов данных (часть 1)

Типы shortint byte smallint word integer
shortint integer integer integer integer integer

byte integer integer integer integer integer
smallint integer integer integer integer integer

word integer integer integer integer integer
integer integer integer integer integer integer

longword int64 longword int64 longword int64
int64 int64 int64 int64 int64 int64

uint64 uint64 uint64 uint64 uint64 uint64
BigInteger BigInteger BigInteger BigInteger BigInteger BigInteger

single single single single single single
real real real real real real

109

Таблица 15

Бинарные операции для всех простых типов данных (часть 2)

Типы longword int64 uint64 BigInteger single real
shortint int64 int64 uint64 BigInteger single real

byte longword int64 uint64 BigInteger single real
smallint int64 int64 uint64 BigInteger single real

word longword int64 uint64 BigInteger single real
integer int64 int64 uint64 BigInteger single real

longword longword uint64 uint64 BigInteger single real
int64 uint64 int64 uint64 BigInteger single real

uint64 uint64 uint64 uint64 BigInteger single real
BigInteger BigInteger BigInteger BigInteger BigInteger - -

single single single single - single real
real real real

То есть, если операнды - целые, то результатом является са-
мый короткий целый тип, требуемый для представления всех полу-
чаемых значений.

При выполнении бинарной операции с 64ݐ݊݅ݑ результирующим

типом будет 64ݐ݊݅ݑ, при этом может произойти переполнение, не вы-
зывающее исключения.

Для операции ࢞/࢟ представленная выше табл. 15 исправляется
следующим образом: результат деления любого целого на целое

имеет тип ݈ܽ݁ݎ.

Для операций ݀݅ݒ и ݉݀݋ выполняются эти же правила, но опе-

ранды могут быть только целыми. Правила вычисления операций ݀݅ݒ

и ݉݀݋ - следующие:

 ,Точнее .ݕ на ݔ результат целочисленного деления – ݕ	ݒ݅݀	ݔ

	ݕ	ݒ݅݀	ݔ ൌ округленное до ближайшего целого по направлению к ,ݕ/ݔ		
0;

 ,Точнее .ݕ на ݔ остаток от целочисленного деления - ݕ	݀݋݉	ݔ

	ݕ	݀݋݉	ݔ ൌ ሻݕ	ݒ݅݀	ݔሺ	–	ݔ	 ∗ .ݕ	

Унарная арифметическая операция ൅ для любого целого типа

возвращает этот тип. Унарная арифметическая операция െ возвра-

щает для целых типов, меньших или равных ݅݊ݎ݁݃݁ݐ, значение типа

 унарная 64ݐ݊݅ݑ к ,64ݐ݊݅ значение типа - 64ݐ݊݅ и ݀ݎ݋ݓ݃݊݋݈ для ,ݎ݁݃݁ݐ݊݅

110

операция െ не применима, для типов ݈݁݃݊݅ݏ и ݈ܽ݁ݎ - соответственно

типы ݈݁݃݊݅ݏ и ݈ܽ݁ݎ. То есть также результатом является самый корот-
кий тип, требуемый для представления всех получаемых значений.

5.4. Ввод с клавиатуры и вывод данных на экран дисплея

 (ࢀࡱࡺ.࡯࡮࡭࢒ࢇࢉ࢙ࢇࡼ)

Ввод данных – это передача информации от внешних устройств
в оперативную память. Вводятся, как правило, исходные данные ре-
шаемой задачи. Вывод – обратный процесс, когда данные переда-
ются из оперативной памяти на внешние носители (принтер, дисплей,
магнитные устройства и т.д.). Результаты решения всякой задачи
должны быть выведены на один из этих носителей.

Основными устройствами ввода-вывода у персонального ком-
пьютера являются клавиатура и дисплей (экран монитора). Именно
через эти устройства главным образом осуществляется диалог
между человеком и ПК.

Процедура ввода с клавиатуры имеет следующий формат:
Read(<cписок ввода>);

где <список ввода> – это последовательность имён переменных, раз-

делённых запятыми. Слово ݀ܽ݁ݎ переводится как читать. (Точнее го-

воря, ܴ݁ܽ݀ – это оператор обращения к стандартной процедуре
ввода.)

Пример 5.6.

Var T : real;
 I : integer;
 S : char;
Begin
 Read(T, I, S);
End.

Набираем на клавиатуре: 0.234⊔12⊔G↲ Enter

Если в программе имеется несколько операторов ܴ݁ܽ݀, то дан-
ные для них вводятся потоком, т. е. после считывания значений пе-

ременных для одного оператора ܴ݁ܽ݀ данные для следующего опе-
ратора читаются из той же строки на экране, что и для предыдущего
до окончания строки, затем происходит переход на следующую
строку.

В этом месте обязательно
вставлять ПРОБЕЛ

Нажать клавишу
ВВОД

111

Пример 5.7.

Var A, B : real;
 C, D : integer;
Begin
 Read(A, B);
 Read(C, D);
End.

Набираем на клавиатуре: 2.234E+02⊔1.45E-03	⊔12⊔23↲ Enter

Но можно и так: 2.234E+02⊔1.45E-03↲ 	Enter12⊔23↲ Enter

Другой вариант оператора ввода с клавиатуры имеет вид:

ReadLn(<cписок ввода>);

Здесь слово ܴ݁ܽ݀݊ܮ означает ݀ܽ݁ݎ	݈݅݊݁ – читать строку. Этот

оператор отличается от ܴ݁ܽ݀ только тем, что после считывания по-

следнего в списке значения для одного оператора ܴ݁ܽ݀݊ܮ данные
для следующего оператора будут считываться с начала новой

строки. Если в предыдущем примере заменить операторы ܴ݁ܽ݀ на

 :݊ܮܴ݀ܽ݁

ReadLn(A, B);
ReadLn(C, D);

то ввод значений будет происходить из двух строк:

2.234E+02⊔1.45E-03↲ 	Enter

12⊔23↲ Enter

Примеры программ, приведённых выше, иллюстрируют ко-
манду присваивания и ввод данных в переменные, но выполнение
таких программ на компьютере бессмысленно, ведь программа запи-
сывает данные в память компьютера и заканчивает работу – без вы-
вода результата работы пользователю. Оператор вывода на экран
(обращение к стандартной процедуре7 вывода) имеет следующий
формат:

Write(<cписок вывода>);

Здесь элементами списка вывода могут быть выражения раз-
личных типов (в частности, константы и переменные).

7 Процедурой называется программа, оформленная специальным образом и рассматриваемая
как единая команда. Следует иметь в виду, что процедур вывода в PascalABC.Net достаточно
много.

112

Пример 5.8.

Write(234); {Выводится целая константа}
Write(A+B-2); {Выводится результат вычисления выра-

жения}
Write(x, Summ, Arg1, Arg2); {Выводятся значения переменных}

При выводе на экран нескольких чисел в строку они не отделя-
ются друг от друга пробелами. Программист сам должен позабо-

титься о таком разделении. Пусть, например, ܫ	 ൌ 	ܬ ;1	 ൌ 	2, К	 ൌ 	3.

Тогда, написав в программе ݁ݐ݅ݎݓሺܫ, ’ ⊔ ’, ,ܬ ’ ⊔ ’, ሻ; получим на экранеܭ

строку: 1	2	3. После вывода последнего символа курсор остаётся в
той же строке. Следующий вывод на экран будет начинаться с этой
позиции курсора.

Второй вариант процедуры вывода на экран:

WriteLn(<cписок вывода>)

Слово ܹ݁ݐ݅ݎݓ – ݊ܮ݁ݐ݅ݎ	݈݅݊݁ – означает писать строку. Его дей-

ствие отличается от оператора ܹ݁ݐ݅ݎ тем, что после вывода послед-
него в списке значения происходит перевод курсора к началу следу-

ющей строки. Оператор ܹ݊ܮ݁ݐ݅ݎ, записанный без параметров, вызы-
вает перевод строки.

Форматы вывода. В списке вывода могут присутствовать указа-
тели форматов вывода (форматы). Формат определяет представле-
ние выводимого значения на экране. Он отделяется от соответству-
ющего ему элемента двоеточием. Если указатель формата отсут-
ствует, то машина выводит значение по определённому правилу,
предусмотренному по умолчанию.

Ниже кратко, в справочной форме, приводятся правила и при-
меры бесформатного и форматированного вывода величин различ-
ных типов. Для представления списка вывода здесь будут использо-
ваны следующие обозначения:

,ܫ ܲ, ܳ – целочисленные выражения;

ܴ – выражение вещественного типа;

 ;выражение булевского типа – ܤ

 ;символьная величина – ݄ܥ

113

ܵ – строковое выражение;

– цифра;

∗ – знак ൅ или -

⊔ – пробел.

Форматы процедуры ܹ݁ݐ݅ݎ

 начиная ,ܫ выводится десятичное представление величины – ܫ
с позиции расположения курсора:

Значение ࡵ Оператор Результат
 ሻ; 123ܫሺ݁ݐ݅ݎܹ 123
,ܫሺ݁ݐ݅ݎܹ 287 ,ܫ ሻ; 287287287ܫ

:ܫ ܲ– выводится десятичное представление величины ܫ в край-

ние правые позиции поля шириной ܲ:

Значение ࡵ Оператор Результат
:ܫሺ݁ݐ݅ݎܹ 123 6ሻ; ⊔⊔⊔ 123
ܫሺሺ݁ݐ݅ݎܹ 287 ൅ :ሻܫ 7ሻ; ⊔⊔⊔⊔ 574

ܴ – в поле шириной 18 символов выводится десятичное пред-

ставление величины ܴ в формате с плавающей точкой. Если 	ܴ ൒
	0,0	, то используется формат _#. ##########Е ∗ ##. Если ܴ 	 ൏ 	0,0, то

формат имеет вид ⊔ െ#. ##########Е ∗ ##:

Значение ࡾ Оператор Результат
⊔ ;ሺܴሻ݁ݐ݅ݎܹ 715.432 ܧ7.1543200000 ൅ 02

െ1.919ܧ ൅ ⊔ ;ሺܴሻ݁ݐ݅ݎܹ 01 െ1.9190000000ܧ ൅ 01

ܴ: ܲ – в крайние правые позиции поля шириной ܲ символов вы-

водится десятичное представление значения ܴ в нормализованном
формате с плавающей точкой. Минимальная длина поля вывода для
положительных чисел составляет 7 символов, для отрицательных –
8 символов. После точки выводится по крайней мере одна цифра:

Значение ࡾ Оператор Результат
:ሺܴ݁ݐ݅ݎܹ 511.04 15ሻ; 5.110400000ܧ ൅ 02

:ሺെܴ݁ݐ݅ݎܹ 46.78 12ሻ; െ4.67800ܧ ൅ 01

ܴ: ܲ: ܳ – в крайние правые позиции поля шириной ܲ символов
выводится десятичное представление значения ܴ в формате с фик-
сированной точкой, причем после десятичной точки выводится ܳ
цифр (0	 ൑ 	ܳ	 ൑ 	24), представляющих дробную часть числа. Если
ܳ	 ൌ 	0, то ни дробная часть, ни десятичная точка не выводятся. Если

114

ܳ	 ൐ 	24, то при выводе используется формат с плавающей точкой:

Значение ࡾ Оператор Результат
:ሺܴ݁ݐ݅ݎܹ 511.04 8: 4ሻ; 511.0400
െ46.78 ܹ݁ݐ݅ݎሺܴ: 7: 2ሻ; ⊔ െ46.78

:݄ܥ ܲ – в крайнюю правую позицию поля шириной ܲ выводится
значение ݄ܥ:

Значение ࢎ࡯ Оператор Результат
:݄ܥሺ݁ݐ݅ݎܹ ′^ܺ′ 3ሻ; ⊔⊔ ܺ

〖 ⊔ :݄ܥሺ݁ݐ݅ݎܹ ′^〖!	′^ 2, :݄ܥ 4ሻ; ⊔ ! ⊔⊔⊔ !

ܵ – начиная с позиции курсора выводится значение ܵ:

Значение ࡿ Оператор Результат
′День	ܰ^′ ܹ݁ݐ݅ݎሺܵሻ; День	ܰ
,ሺܵ݁ݐ݅ݎܹ ′^ܦܦܴܴ′ ܵሻ; ܴܴܦܦܴܴܦܦ

ܵ: ܲ – значение ܵ выводится в крайние правые позиции поля ши-
риной ܲ символов:

Значение ࡿ Оператор Результат
′День	ܰ^′ ܹ݁ݐ݅ݎሺܵ: 10ሻ; ⊔⊔⊔⊔ День ⊔ ܰ
:ሺܵ݁ݐ݅ݎܹ ′^ܦܦܴܴ′ 5, ܵ: 5ሻ; ⊔ ܦܦܴܴ ⊔RRDD

 выводится результат выражения B: true или false, начиная с – ܤ
текущей позиции курсора:

Значение ࡮ Оператор Результат
 ݁ݑݎܶ ;ሻܤሺ݁ݐ݅ݎܹ ݁ݑݎܶ
ݐ݋ܰ,ܤሺ݁ݐ݅ݎܹ ݁ݏ݈ܽܨ ݁ݑݎܶ݁ݏ݈ܽܨ ;ሻܤ

:ܤ ܲ – в крайние правые позиции поля шириной ܲ символов вы-
водится результат булевского выражения:

Значение ࡮ Оператор Результат
:ܤሺ݁ݐ݅ݎܹ ݁ݑݎܶ 6ሻ; ⊔⊔ ݁ݑݎܶ
:ܤሺ݁ݐ݅ݎܹ ݁ݏ݈ܽܨ 6, ݐ݋ܰ :ܤ 7ሻ; ⊔ ݁ݏ݈ܽܨ ⊔⊔⊔ ݁ݑݎܶ

Использование для вывода на экран только процедур ܹ݁ݐ݅ݎ и
-дает программисту очень слабые возможности для управле ݊ܮ݁ݐ݅ݎܹ
ния расположением на экране выводимого текста. Печать текста мо-
жет производиться только сверху вниз, слева направо. Невозможны
возврат к предыдущим строкам, стирание напечатанного текста, из-
менение цвета символов и т.д.

Дополнительные возможности управления выводом на экран
дают процедуры и функции модуля ܴܶܥ. Об этом модуле и способах
его использования подробно рассказано в «Программирование в
Turbo Pascal 7.0. Учебное пособие» [1].

115

5.5. Главные правила синтаксиса ࡭࡮ࢂ

Синтаксис ܸܣܤ, как понятно из самого названия этого языка (ко-
торое расшифровывается как ܸ݈݅ܽݑݏ	ܿ݅ݏܽܤ	ݎ݋݂	ݏ݊݋݅ݐ݈ܽܿ݅݌݌ܣ), почти
полностью совпадает с синтаксисом ܸ݈݅ܽݑݏ	ܿ݅ݏܽܤ. Некоторые основ-
ные синтаксические принципы этого языка:

 VBA нечувствителен к регистру;
 чтобы закомментировать код до конца строки, использу-

ется одинарная кавычка (') или команда ܴܯܧ;
 символьные значения должны заключаться в двойные ка-

вычки;
 максимальная длина любого имени в ܸܣܤ (переменные,

константы, процедуры) – 255 символов;
 начало нового оператора – перевод на новую строку;
 ограничений на максимальную длину строки нет (хотя в

редакторе умещается только 308 символов). Несколько
операторов в одной строке разделяются двоеточиями:

MsgBox "Проверка 1" : MsgBox "Проверка 2"

 для удобства чтения можно объединить несколько физи-
ческих строк в одну логическую при помощи пробела:

MsgBox "Сообщение пользователю" _
 & vUserName

5.5.1. Типы данных ࡭࡮ࢂ

В VBA, как и в любом другом языке программирования, пере-
менные и константы используются для хранения каких-либо значе-
ний. Как следует из названия, переменные могут изменяться, кон-
станты же хранят фиксированные значения.

Например, константа Pi хранит значение 3,14159265… Число
“Пи” не будет изменяться в ходе выполнения программы, но все же
хранить такое значение удобнее как константу.

В то же время мы можем использовать переменную sVAT_Rate
для хранения ставки НДС на покупаемые товары. Величина перемен-
ной sVAT_Rate может изменяться в зависимости от того, что за товар
приобретается.

Все переменные и константы относятся к определённому типу
данных. В табл. 16 приведены типы данных, используемые в VBA, с
описанием и диапазоном возможных значений.

116

Таблица 16

Типы данных VBA

Тип дан-
ных

Размер Описание Диапазон значений

1 2 3 4
Byte 1 байт Положитель-

ные целые
числа; часто
используется
для двоичных

данных

от 0 до 255

Boolean 2 байта Может прини-
мать значения
либо True,
либо False

True или False

Integer 2 байта Целые числа
(нет дробной

части)

от -32 768
до +32 767

Long 4 байта Большие це-
лые числа (нет
дробной части)

от -2 147 483 648
до +2 147 483 647

Single 4 байта Число с плава-
ющей точкой
одинарной точ-

ности

от -3.4e38
до +3.4e38

Double 8 байт Число с плава-
ющей точкой
двойной точно-

сти

от -1.8e308
до +1.8e308

Currency 8 байт Число с плава-
ющей точкой, с
фиксирован-
ным количе-

ством десятич-
ных разрядов

от -922 337 203 685 477.5808
до +922 337 203 685 477.5807

Date 8 байт Дата и время –
данные типа

Date представ-
лены числом с
плавающей

точкой. Целая
часть этого
числа выра-
жает дату, а
дробная часть

– время

от 1 января 100
до 31 декабря 9999

117

Продолжение табл.16

1 2 3 4
Object 4 байта Ссылка на объ-

ект
Любая ссылка на объект

String Изменяется Набор симво-
лов. Тип String
может иметь
фиксирован-
ную или изме-
няющуюся
длину. Чаще
используется с
изменяющейся

длиной

Фиксированной длины – при-
близительно до 65 500 симво-

лов.
Переменной длины – приблизи-
тельно до 2 миллиардов симво-

лов

Variant Изменяется Может содер-
жать дату,

число с плава-
ющей точкой

или строку сим-
волов. Этот тип
используют в
тех случаях,
когда заранее
не известно,
какой именно
тип данных бу-
дет введён

Число – Double,
строка – String

Очевидно, что, пользуясь табл. 16 и правильно выбирая тип
данных, можно использовать память более экономно (например, вы-
брать тип данных Integer вместо Long или Single вместо Double). Од-
нако, используя более компактные типы данных, нужно внимательно
следить за тем, чтобы в коде не было попыток уместить в них не со-
размерно большие значения.

 ࢚࢏ࢉ࢏࢒࢖࢞ࡱ	࢔࢕࢏࢚࢖ࡻ .5.5.2

Оператор Option Explicit заставляет объявлять все переменные,
которые будут использованы в коде VBA, и при компиляции выделяет
все необъявленные переменные как ошибки (прежде чем будет запу-
щено выполнение кода). Применить этот оператор не сложно – про-
сто запишите в самом верху файла VBA такую строку:

Option Explicit

118

Если хотите всегда вставлять Option Explicit в начало каждого
нового созданного модуля VBA, то это можно делать автоматически.
Для этого необходимо включить параметр Require Variable
Declaration в настройках редактора VBA.

Это делается так:

 В меню редактора кода Visual Basic нажмите Tools > Options

 В появившемся диалоговом окне откройте вкладку Editor

 Отметьте галочкой параметр Require Variable Declaration и

нажмите ОК

 При включенном параметре строка Option Explicit будет авто-

матически вставляться в начало каждого нового созданного

модуля.

5.5.3. Область действия переменных и констант

Каждая объявленная переменная или константа имеет свою

ограниченную область действия, то есть ограниченную часть про-

граммы, в которой эта переменная существует. Область действия за-

висит от того, где было сделано объявление переменной или кон-

станты. Возьмём, к примеру, переменную sVAT_Rate, которая ис-

пользуется в функции Total_Cost. Далее рассматриваются варианты

области действия переменной sVAT_Rate, объявленной в двух раз-

личных позициях в модуле:

‘ Вариант №1

Option Explicit

Dim sVAT_Rate As Single

Function Total_Cost() As Double

...

End Function

Если переменная sVAT_Rate объ-
явлена в самом начале модуля, то
областью действия этой перемен-
ной будет весь модуль (т.е. пере-
менная sVAT_Rate будет распозна-
ваться всеми процедурами в этом
модуле).
Следовательно, если в функции
Total_Cost переменной sVAT_Rate
будет присвоено некоторое значе-
ние, то следующая функция, выпол-
няемая в пределах этого же

119

модуля, будет использовать пере-
менную sVAT_Rate с этим же значе-
нием.
Однако, если будет вызвана какая-
то функция, расположенная в дру-
гом модуле, то для неё переменная
sVAT_Rate будет не известна.

‘ Вариант №2

Option Explicit

Function Total_Cost() As Double

 Dim sVAT_Rate As Single

...

End Function

Если переменная sVAT_Rate объяв-
лена в начале функции Total_Cost,
то её область действия будет огра-
ничена только этой функцией (т.е. в
пределах функции Total_Cost,
можно будет использовать пере-
менную sVAT_Rate,а за её преде-
лами – нет).
При попытке использовать sVAT_
Rate в другой процедуре, компиля-
тор VBA сообщит об ошибке, так как
эта переменная не была объявлена
за пределами функции Total_Cost
(при условии, что использован опе-
ратор Option Explicit).

В показанном выше примере переменная объявлена на уровне

модуля при помощи ключевого слова Dim. Однако бывает необхо-

димо, чтобы объявленными переменными можно было пользоваться

в других модулях. В таких случаях для объявления переменной вме-

сто ключевого слова Dim нужно использовать ключевое слово Public.

Кстати, для того чтобы объявить переменную на уровне модуля,

вместо ключевого слова Dim можно использовать ключевое слово

Private, которое укажет на то, что данная переменная предназначена

для использования только в текущем модуле.

Для объявления констант также можно использовать ключевые

слова Public и Private, но не вместо ключевого слова Const, а вместе

с ним.

В следующих примерах показано использование ключевых слов

Public и Private в применении к переменным и к константам.

120

Пример 5.9.

Option Explicit

Public sVAT_Rate As Single

Public Const iMax_Count = 5000

...

В этом примере ключевое слово
Public использовано для объяв-
ления переменной sVAT_Rate и
константы iMax_Count. Обла-
стью действия объявленных та-
ким образом элементов будет
весь текущий проект.
Это значит, что sVAT_Rate и
iMax_Count будут доступны в
любом модуле проекта.

Пример 5.10.

Option Explicit

Private sVAT_Rate As Single

Private Const iMax_Count = 5000

...

В этом примере для объявле-
ния переменной sVAT_Rate и
константы iMax_Count исполь-
зовано ключевое слово Private.
Областью действия этих эле-
ментов является текущий мо-
дуль.
Это значит, что sVAT_Rate и
iMax_Count будут доступны во
всех процедурах текущего мо-
дуля, но не будут доступны для
процедур, находящихся в дру-
гих модулях.

5.5.4. Операторы ࡭࡮ࢂ: арифметические, логические,
сравнения, присвоения

Оператор – это наименьшая способная выполняться единица
кода ܸܣܤ. Оператор может объявлять или определять переменную,
устанавливать параметр компилятора ܸ или выполнять какое-либо ܣܤ
действие в программе.

Арифметических операторов в ܸܣܤ всего 7. Четыре стандарт-
ных: сложение (ݔ ൅ ݔ) вычитание ,(ݕ െ ݔ) умножение ,(ݕ ∗ деление ,(ݕ
(࢞/࢟) и еще три:

 возведение в степень (ݕ^ݔ), например 2^3 ൌ 	8;
 целочисленное деление (\). Делит первое число на вто-

рое, отбрасывая (не округляя) дробную часть. Например,
5\2	 ൌ 	2;

121

 деление по модулю (݀݋ܯ). Делит первое число на второе,
возвращая только остаток от деления. Например,
2	݀݋ܯ	5 ൌ 	1.

Оператор присвоения в ܸܣܤ – знак равенства. Можно записы-
вать так:

Let nVar = 10

а можно ещё проще:

nVar = 10

Во втором случае не путайте знак равенства с оператором ра-
венства.

Выражение nVar = 10 – это значит «присвоить переменной ݊ ݎܸܽ
значение 10», а если строка выглядит так: If (nVar = 10) – это значит
«если значение переменной ܸ݊ܽݎ равно 10».

Если переменной нужно назначить объект, то делается это дру-
гими способами.

Операторов сравнения в VBA всего 8:

 равенство (ൌ), например, ݂ܫ	ሺܸ݊ܽݎ	 ൌ 	10ሻ;
 больше, чем и меньше, чем ሺ൐ и ൏), например, ݂ܫ	ሺܸ݊ܽݎ	 ൐

	10ሻ;
 больше или равно и меньше или равно (൐ൌ и ൏ൌ), напри-

мер, ݂ܫ	ሺܸ݊ܽݎ	 ൐ൌ 	10ሻ;
 не равно (൏൐), например, ݂ܫሺܸ݊ܽݎ ൏൐ 10ሻ;
 сравнение объектов (ݏܫ). Определяет, ссылаются объект-

ные переменные на тот же объект или на разные, напри-
мер, ݂ܫሺ1݆ܾ݋	ݏܫ	2݆ܾ݋ሻ;

 подобие (݁݇݅ܮ). Сравнивает строковый объект с шаблоном
и определяет, подходит ли шаблон.

Операторы сравнения всегда возвращают ݁ݑݎݐ или ݂݈ܽ݁ݑݎݐ – ݁ݏ,
если утверждение истинно, и ݂݈ܽ݁ݏ, если ложно.

Немного про сравнение строковых значений:

 при сравнении строковых значений регистр учитывается;
 пробелы в строковых значениях также учитываются;
 при сравнении текстовых строк на больше/меньше по

122

умолчанию сравниваются просто двоичные коды симво-
лов – какие больше или меньше. Если нужно использовать
тот порядок, который идёт в алфавите, то можно восполь-
зоваться командой Option Compare Text.

Чуть подробнее про оператор ݁݇݅ܮ. Общий его синтаксис выгля-

дит как Выражение1 Like Выражение2

При этом Выражение1 – любое текстовое выражение ܸܣܤ, а Вы-
ражение2 – шаблон, который передаётся оператору ݁݇݅ܮ. В этом шаб-
лоне можно использовать специальные подстановочные символы
(табл. 17).

Таблица 17

Подстановочные символы для оператора LIKE

Подстановочный символ Значение
Любая цифра (только одна) от 0 до 9
* Любое количество любых символов (включая

нулевое)
? Любой символ (только один)

[a,b,c] Любой символ (только один) из приведённого
списка

[!a,b,c] Любой символ (только один), кроме приведён-
ных в списке

Очень часто при проверке нескольких условий используются ло-
гические операторы:

 ;логическое И, должны быть истинными оба условия – ܦܰܣ

ܱܴ – логическое ИЛИ, должно быть истинным хотя бы одно из
условий;

ܱܰܶ – логическое отрицание, возвращает ܴܷܶܧ, если условие
ложно;

ܱܴܺ – логическое исключение. В выражении 1ܧ	ܴܱܺ	2ܧ	возвра-
щает ܴܷܶܧ, если только 1ܧ	 ൌ 	2ܧ или только ܧܷܴܶ	 ൌ ,ܧܷܴܶ	
иначе – ܧܵܮܣܨ;

 ,ܧܷܴܶ эквивалентность двух выражений, возвращает – ܸܳܧ
если они имеют одинаковое значение;

	1ܧ если ,ܧܵܮܣܨ импликация, возвращает – ܲܯܫ ൌ 	2ܧ и	ܧܷܴܶ	 ൌ
 .ܧܷܴܶ - иначе ,ܧܵܮܣܨ	

123

Помнить нужно про ܦܰܣ, ܱܴ, ܱܰܶ, остальные логические опе-

раторы используются редко.

Почти в любой программе ܸܣܤ используются операторы конка-

тенации. В ܸ их два – ൅ или &. Рекомендуется всегда использовать ܣܤ

&, потому что:

 при использовании & производится автоматическое пре-

образование числовых значений в строковые - нет опасно-

сти допустить ошибку;

 при использовании оператора ൅ сложение строкового зна-

чения со значением типа ݈݈ܰݑ дает ݈݈ܰݑ.

Пример 5.11.

MsgBox "Сообщение пользователю" & vUserName

Порядок применения операторов можно регулировать при по-
мощи круглых скобок.

Пример 5.12.

Математическая запись: ݕ ൌ 		 ሺܽ ൅ ܾሻ/ሺܿ െ ݀ሻ

В VBA: y = (a+b)/(c-d)

5.5.5. Переменные и типы данных

Переменные – контейнеры для хранения изменяемых данных.

Без них не обходится практически ни одна программа. Для простоты

переменную можно сравнить с номерком в гардеробе – вы сдаёте в

«гардероб» какие-то данные, в ответ вам выдаётся номерок. Когда

вам опять потребовались эти данные, вы «предъявляете номерок» и

получаете их.

Пример 5.13.

Dim nMyAge As Integer
nMyAge = nMyAge + 10
MsgBox nMyAge

124

Перед работой с переменной настоятельно рекомендуется её
объявить. Объявление переменной в нашем примере выглядит так:

Dim nMyAge As Integer

Как расшифровать эту строку:

-предусмот ܣܤܸ это область видимости переменной. В – ݉݅ܦ
рено 4 ключевых слова для определения области видимости пере-
менных:

 ݉݅ܦ – используется в большинстве случаев. Если перемен-

ная объявлена как ݉݅ܦ в области объявлений модуля, она бу-
дет доступна во всем модуле, если в процедуре – только на
время работы этой процедуры;

 ܲ݁ݐܽݒ݅ݎ – при объявлении переменных в ܸ значит то же, что ܣܤ

и ݉݅ܦ;

 ݈ܾܲܿ݅ݑ – такая переменная будет доступна всем процедурам
во всех модулях данного проекта, если вы объявили её в об-
ласти объявлений модуля. Если вы объявили её внутри про-
цедуры, то она будет вести себя как Dim или Private;

 ܵܿ݅ݐܽݐ – такие переменные можно использовать только внутри
процедуры. Эти переменные видны только внутри проце-
дуры, в которой они объявлены, зато они сохраняют своё зна-
чение между разными вызовами этой процедуры. Обычно ис-
пользуются для накопления каких-либо значений.

Пример 5.14.

Static nVar1 As Integer
nVar1 = nVar1 + 1
MsgBox nVar1

Если нет никаких особых требований, то есть смысл всегда вы-

бирать область видимости ݉݅ܦ.

Второе слово в нашем объявлении (݊݁݃ܣݕܯ) – это идентифика-

тор (проще говоря, имя) переменной. Правила выбора имен в ܸܣܤ
едины для многих элементов (переменные, константы, функции и
процедуры и т.п.). Имя:

 должно начинаться с буквы;

125

 не должно содержать пробелов и символов пунктуации
(исключение – символ подчёркивания);

 максимальная длина – 255 символов;
 должно быть уникальным в текущей области видимости

(подробнее – далее);
 зарезервированные слова (те, которые подсвечиваются

другим цветом в окне редактора кода) использовать
нельзя.

При создании программ ܸ -настоятельно рекомендуется опре ܣܤ
делиться с правилами, по которым будут присваиваться имена объ-
ектам – соглашение об именовании. Чаще всего используется так
называемое венгерское соглашение (в честь одного из программи-

стов ݏ݈݁ݎ݄ܽܥ ,ݐ݂݋ݏ݋ݎܿ݅ܯ	݅ݕ݊݋݉݅ܵ, венгра по национальности):

имя переменной должно начинаться с префикса, записан-
ного строчными буквами. Префикс указывает, что
именно будет храниться в этой переменной:

 ݎݐݏ (или ݏ) – ܵ݃݊݅ݎݐ, символьное значение;

 ݂݊ (или ݂) – функция;

 ܿ (или сделать все буквы заглавными) – константа;

 ܾ – ݈݊ܽ݁݋݋ܤ, логическое значение (݁ݑݎݐ или ݂݈ܽ݁ݏ);

 ݀ – дата;

 ݆ܾ݋ (или ݋) – ссылка на объект;

 ݊ – числовое значение.

Имена функций, методов и каждое слово в составном слове
должно начинаться с заглавной буквы:

MsgBox objMyDocument.Name
Sub CheckDateSub()

В ранних версиях ܸ݈݅ܽݑݏ	ܿ݅ݏܽܤ не было слова ݐݏ݊݋ܥ – все кон-
станты определялись как переменные, а для отличия их записывали
заглавными буквами, между словами ставили подчёркивания:

COMPANY_NAME.

Многие программисты используют такой подход для обозначе-

ния констант и сейчас (но использование ключевого слова ݐݏ݊݋ܥ те-
перь обязательно – об этом будет рассказано в разделе 5.5.6).

126

Третья часть нашего объявления – ݏܣ	ݎ݁݃݁ݐ݊ܫ – это указание на
тип данных нашей переменной. Тип данных определяет, данные ка-
кого вида можно будет хранить в нашей переменной.

В ܸܣܤ предусмотрены следующие типы данных:

 числовые (ܾ݁ݐݕ – целое число от 0 до 255, ݅݊ݎ݁݃݁ݐ – целое
число от -32768 до 32767, ݈݃݊݋ – большое целое число,
 ,большое десятичное число с 19 позициями) ݕܿ݊݁ݎݎݑܿ
включая 4 позиции после запятой), ݈݀݁ܿ݅݉ܽ (ещё большее
десятичное число с 29 позициями), ݈݁݃݊݅ݏ и ݈ܾ݀݁ݑ݋ – зна-
чение с плавающей запятой (݈ܾ݀݁ݑ݋ в два раза больше));

ВАЖНО: Попытка объявить переменную с типом ݈ܽ݉݅ܿ݁ܦ (например,

 .приведет к синтаксической ошибке (݈ܽ݉݅ܿ݁ܦ	ݏܣ	݊	݉݅ܦ

Чтобы получить возможность работать с типом ݈ܽ݉݅ܿ݁ܦ,
переменную нужно изначально объявить, как ܸܽݐ݊ܽ݅ݎ или

вообще объявить без типа (݉݅ܦ	݊), поскольку тип данных

 .по умолчанию ܣܤܸ используется в ݐ݊ܽ݅ݎܸܽ

 строковые (݃݊݅ݎݐݏ переменной длины (до примерно 2 млрд
символов) и фиксированной длины (до примерно 65400
символов);

 дата и время (݀ܽ݁ݐ – от 01.01.0100 до 31.12.9999);

 логический (ܾ݈݊ܽ݁݋݋ – может хранить только значения
 ;(݁ݏ݈ܽܨ и ݁ݑݎܶ

 объектный (ݐ݆ܾܿ݁݋ – хранит ссылку на любой объект в па-
мяти);

 ܸܽݐ݊ܽ݅ݎ – специальный тип данных, который может хра-
нить любые другие типы данных.

Можно ещё использовать пользовательские типы данных, но их

вначале нужно определить при помощи выражения ܶ݁݌ݕ. Обычно
пользовательские типы данных используются как дополнительное
средство проверки вводимых пользователем значений (классический
пример – почтовый индекс).

Некоторые моменты, связанные с выбором типов данных для
переменных:

127

 общий принцип – выбирайте наименьший тип данных, ко-
торый может вместить выбранные вами значения. Если
есть какие-то сомнения – выбирайте больший тип данных
во избежание возникновения ошибок;

 если есть возможность, то лучше не использовать типы
данных с плавающей запятой (݈݁݃݊݅ݏ и ݈ܾ݀݁ݑ݋). Работа с
такими типами данных производится медленнее, кроме
того, могут быть проблемы при сравнениях за счёт округ-
лений;

 если есть возможность, то лучше не пользоваться типом
 к одному из ܣܤܸ Этот тип все равно приводится .ݐ݊ܽ݅ݎܸܽ
других типов, но памяти для него требуется больше.
Кроме того, в ходе такого неявного образования могут воз-
никнуть ошибки;

 при определении переменных можно использовать так
называемые символы определения типа (%	– ,ݎ݁݃݁ݐ݊݅
$	– -и т.п.). Например, в примере 5.14 нужно заком ݃݊݅ݎݐܵ
ментировать строку Static nVar1 As Integer, а во второй
строке написать: nVar1% = nVar1% + 1.

Такой подход является устаревшим и к использованию не реко-
мендуется.

При объявлении переменных можно и не указывать её тип.
Например, наше объявление может выглядеть так: ݉݅ܦ	1ݎܸܽ݊.

В этом случае переменная будет автоматически объявлена с
типом ܸܽݐ݊ܽ݅ݎ.

В принципе в ܸܣܤ можно работать и без объявления перемен-
ных. Например, такой код:

nVar1 = nVar1 + 1
MsgBox nVar1

будет вполне работоспособным. Если мы используем переменную в
программе без её объявления, то будет автоматически создана но-
вая переменная типа ܸܽݐ݊ܽ݅ݎ. Однако объявлять переменные
нужно обязательно! И при этом желательно явно указывать нуж-
ный тип данных. Почему:

 сокращается количество ошибок: программа с самого
начала откажется принимать в переменную значение не-
правильно типа (например, строковое вместо числового);

128

 при работе с объектами подсказка по свойствам и мето-
дам действует только тогда, когда мы изначально объ-
явили объектную переменную с нужным типом. Например,
в ݈݁ܿݔܧ два варианта кода будут работать одинаково:

первый вариант:

Dim oWbk As Workbook
Set oWbk = Workbooks.Add()

второй вариант:

Set oWbk = Workbooks.Add()

Но подсказка по свойствам и методам объекта ܾܹ݇݋ будет ра-
ботать только во втором случае.

Все опытные разработчики вообще запрещают использование
переменных без явного их объявления. Для этого можно воспользо-
ваться специальной командой компилятора (она помещается только
в раздел объявлений модуля) Option Explicit, а можно вставлять эту
команду во все модули при их создании автоматически – установив в
окне редактора кода флажок ܴ݁݁ݎ݅ݑݍ	݈ܾ݁ܽ݅ݎܸܽ	ݏ݊݋݅ݐܽݎ݈ܽܿ݁ܦ (меню
	ݏ݈݋݋ܶ → .(ݎ݋ݐ݅݀ܧ вкладка ,ݏ݊݋݅ݐ݌ܱ	

Проиллюстрировать, зачем они это делают, можно на простом
примере.

Пример 5.15.

Dim n
п = п + 1
MsgBox п

С виду код не должен вызывать никаких проблем и просто вы-
водить в окне сообщения единицу. На самом деле он выведет пустое
окно сообщения. Причина спрятана очень коварно: в третьей строке
݊ – это вовсе не английская буква ܰ, а русская П. На вид в окне ре-
дактора кода отличить их очень сложно. В то же время компилятор
 встретив такой код, просто создаст новую переменную с типом ,ܣܤܸ
данных ܸܽݐ݊ܽ݅ݎ, у которой будет пустое значение. На выявление та-
кой ошибки может потребоваться определённое время.

Хорошее правило – объявлять переменные заблаговременно, а
не когда они потребовались. Это позволяет сделать программу более
читаемой и чётко спланированной.

129

Можно объявить несколько переменных в одной строке, напри-
мер, так:

Dim n1 As Integer, s1 As String

Присвоение значений переменным выглядит так:

nVar1 = 30

Если нужно увеличить уже существующее значение перемен-
ной, то команда может выглядеть так:

nVar1 = nVar1 + 1

В обоих примерах знак равенства означает не «равно», а при-
своить.

При присвоении значений переменным нужно помнить о следу-
ющем:

 строковые значения всегда заключаются в двойные ка-
вычки:

sVar1 = "Hello";

 значение даты/времени заключается в «решётки» – сим-
волы фунта:

dVar1 = #05/06/2020#

Обратите внимание, что при присвоении значения даты/вре-
мени таким «явным способом» нам придётся использовать принятые
в США стандарты: 05 в данном случае – это месяц, 06 – день. Отоб-
ражение же этого значения (например, в окне сообщения) будет за-
висеть от региональных настроек на компьютере пользователя.

Если нужно передать шестнадцатеричное значение, то перед
ним ставятся символы &ܪ:

nVar1 = &HFF00

Что содержится в переменных до присвоения им значений?

В переменных всех числовых типов данных – 0.

В строковых переменных переменной длины – "" (строка нуле-
вой длины).

В строковых переменных фиксированной длины – строка дан-
ной длины с символами 0 ܫܫܥܵܣ (эти символы на экран не выводятся).

В ܸܽݐ݊ܽ݅ݎ – пустое значение.

В ܱܾ݆݁ܿݐ – ничто (нет ссылки ни на один из объектов).

130

5.5.6. Константы, объявление, ключевое слово ࢚࢙࢔࢕࡯,
встроенные константы, ࢜ࢌࡸ࢘࡯࢈

Константы – ещё один контейнер для хранения данных, но, в
отличие от переменных, они не изменяются в ходе выполнения ܸܣܤ-
программы. Для чего нужны константы:

 код становится лучше читаемым/убираются потенциаль-
ные ошибки;

 чтобы изменить какое-либо значение, которое много раз
используется в программе (например, уровень налога) –
это можно сделать один раз.

В ܸܣܤ константы определяются при помощи ключевого слова
 :ݐݏ݊݋ܥ

Const COMP_NAME As String = “Microsoft”

При попытке в теле процедуры изменить значение константы
будет выдано сообщение об ошибке.

Константы очень удобны при работе с группами именованных
элементов (дни недели, месяцы, цвета, клавиши, типы окон и т.п.).
Они позволяют использовать в коде программы легко читаемые обо-
значения вместо труднозапоминаемых числовых кодов. Например,
строки

UserForm1.BackColor = vbGreen
и

UserForm1.BackColor = 65280

функционально одинаковы, но в чем смысл первой строки, дога-
даться гораздо легче.

В ܸܣܤ встроено множество служебных констант: календарных,
для работы с файлами, цветами, формами, типами дисков и т.п. Про-
смотреть их можно через справочную систему ܸܣܤ:
	݊݋݅ݐܽݐ݊݁݉ݑܿ݋ܦ	ܿ݅ݏܽܤ	݈ܽݑݏܸ݅	ݐ݂݋ݏ݋ݎܿ݅ܯ → 	݁ܿ݊݁ݎ݂ܴ݁݁	ܿ݅ݏܽܤ	݈ܽݑݏܸ݅	 →
 Про одну из констант (она находится в разделе .ݏݐ݊ܽݐݏ݊݋ܥ	
 позволяет ݂ܮݎܥܾݒ следует сказать особо: константа (ݏݑ݋݈݈݁݊ܽ݁ܿݏ݅ܯ
произвести переход на новую строку.

Пример 5.16.

MsgBox ("Первая строка" + vbCrLf + "Вторая строка")

131

5.5.7. Функция ࢞࢕࡮ࢍ࢙ࡹ

Функция ݔ݋ܤ݃ݏܯ выводит сообщение в диалоговом окне, ожи-
дает нажатия кнопки пользователем и возвращает значение типа
 которое указывает, какая кнопка использовалась ,ݎ݁݃݁ݐ݊ܫ
(табл. 18–20).

Синтаксис:

MsgBox(Сообщение [, Кнопки] [, Заголовок] [, ФайлСправки] [, Контекст])8

Таблица 18

Аргументы функции ࢞࢕࡮ࢍ࢙ࡹ

Аргумент Описание
Сообщение Обязательный аргумент. строковое выражение, отобража-

емое как сообщение в диалоговом окне. Максимальная
длина строки аргумента Сообщение составляет приблизи-
тельно 1024 знаков и зависит от их ширины. Если аргумент
Сообщение содержит несколько строк, их можно разде-
лить с помощью знака возврата каретки (ݎ݄ܥሺ13ሻ), знака
перевода строки (ݎ݄ܥሺ10ሻ) или сочетания этих знаков
&	ሺ13ሻݎ݄ܥ) .(ሺ10ሻݎ݄ܥ

Кнопки Необязательный аргумент. числовое выражение, которое
представляет собой сумму значений, указывающих число
и тип отображаемых кнопок, стиль значка, активную кнопку
по умолчанию, а также, является ли окно сообщения мо-
дальным. Если аргумент Кнопки пропущен, по умолчанию
используется значение 0.

Заголовок Необязательный аргумент. Строковое выражение, отобра-
жаемое в строке заголовка диалогового окна. Если аргу-
мент Заголовок опущен, в строке заголовка выводится имя
приложения.

ФайлСправки Необязательный аргумент. Строковое выражение, опре-
деляющее файл справки, в котором содержится контекст-
ная справка данного диалогового окна. Если задан аргу-
мент ФайлСправки, необходимо также указать аргумент
Контекст.

Контекст Необязательный аргумент. Числовое выражение, пред-
ставляющее собой номер контекста, присвоенный авто-
ром справки соответствующему разделу. Если задан аргу-
мент Контекст, необходимо также указать аргумент
ФайлСправки.

8 Англ. вариант MsgBox(prompt [, buttons] [, title] [, helpfile, context])

132

Таблица 19
Параметры аргумента Кнопки

Константа Значение Описание
1 2 3

vbOKOnly 0 Отображается только кнопка
ОК.

vbOKCancel 1 Отображаются кнопки ОК и От-
мена.

vbAbortRetryIgnore 2 Отображаются кнопки Пре-
рвать, Повторить и Пропу-
стить.

vbYesNoCancel 3 Отображаются кнопки Да, Нет и
Отмена.

vbYesNo 4 Отображаются кнопки Да и Нет.
vbRetryCancel 5 Отображаются кнопки Повто-

рить и Отмена.
vbCritical 16 Отображается значок важного

сообщения.
vbQuestion 32 Отображается значок сообще-

ния с предостережением.
vbExclamation 48 Отображается значок преду-

преждающего сообщения.
vbInformation 64 Отображается значок информа-

ционного сообщения.
vbDefaultButton1 0 По умолчанию активна первая

кнопка.
vbDefaultButton2 256 По умолчанию активна вторая

кнопка.
vbDefaultButton3 512 По умолчанию активна третья

кнопка.
vbDefaultButton4 768 По умолчанию активна четвер-

тая кнопка.
vbApplicationModal 0 Модальность на уровне прило-

жения. Пользователь должен
ответить на сообщение, чтобы
продолжить работу в текущем
приложении.

vbSystemModal 4096 Модальность на уровне си-
стемы. В ожидании ответа
пользователя на сообщение
приостанавливается работа
всех приложений.

133

Продолжение табл.19

1 2 3
vbMsgBoxHelpButton 16384 В диалоговое окно сообщения

добавляется кнопка «Справка».
VbMsgBoxSetForeground 65536 Окно сообщения выводится на

переднем плане.
vbMsgBoxRight 524288 Текст сообщения выравнива-

ется по правому краю.
vbMsgBoxRtlReading 1048576 Текст сообщения выводится

справа налево. Эта возмож-
ность предназначена для си-
стем, в которых используется
арабский язык или иврит.

Первая группа значений (0 – 5) отражает число и тип кнопок в
диалоговом окне. Вторая группа (16, 32, 48, 64) описывает стиль
значка сообщения. Третья группа (0, 256, 512) определяет активную
по умолчанию кнопку. Наконец, четвертая группа (0, 4096) устанавли-
вает модальность сообщения. При добавлении чисел в итоговое зна-
чение аргумента Кнопки следует использовать только один аргумент
из группы.

ПРИМЕЧАНИЕ: Приведённые здесь константы определены в

-для приложений, что позволяет заме ܿ݅ݏܽܤ	݈ܽݑݏܸ݅
нить ими числовые значения в любом месте про-
граммы.

Таблица 20

Возвращаемые значения функции ࢞࢕࡮ࢍ࢙ࡹ

Константа Значение Описание

vbOK 1 ОК
vbCancel 2 Отмена
vbAbort 3 Прервать
vbRetry 4 Повторить
vbIgnore 5 Пропустить
vbYes 6 Да
vbNo 7 Нет

134

Если указаны аргументы ФайлСправки и Контекст, то пользо-

ватель может, нажав клавишу 1ܨ, открыть раздел справки, заданный

аргументом Контекст. Некоторые ведущие приложения, например,

 и старше, автоматически добавляют 2007	݈݁ܿݔܧ	݂݂ܱ݁ܿ݅	ݐ݂݋ݏ݋ݎܿ݅ܯ

кнопку Справка в диалоговое окно.

Если в диалоговом окне отображается кнопка Отмена, то нажа-

тие кнопки Отмена равносильно нажатию клавиши ܥܵܧ. Если в диа-

логовом окне выводится кнопка Справка, то для данного окна до-

ступна контекстная справка. Однако до нажатия какой-либо другой

кнопки никакое значение не возвращается.

ПРИМЕЧАНИЕ: Чтобы указать несколько аргументов, а не только

первый из названных, используйте функцию

 в выражении. Чтобы не включать некоторые ݔ݋ܤ݃ݏܯ

аргументы, замените их разделителем в виде запя-

той.

В своей самой простой форме ݔ݋ܤ݃ݏܯ используется как опера-

тор с одним аргументом – сообщением, которое должно отобра-

жаться. Приведённый ниже макрос создаёт сообщение, показанное

на рис. 26.

Пример 5.17.

Sub Program ()
 MsgBox "Это - окно сообщений"
End Sub

Рис. 26. Простое окно
сообщения

-можно использовать для отображения числового зна ࢞࢕࡮ࢍ࢙ࡹ
чения (рис. 27).

135

Пример 5.18.

Sub ShowValue()
 Amount = 10
 MsgBox Amount
End Sub

Рис. 27. Вывод числа

Переменной ݐ݊ݑ݋݉ܣ присваивается значение 10. На следую-
щей строке для отображения значения ݐ݊ݑ݋݉ܣ используется
-нет кавычек, поскольку это – значение пере ݐ݊ݑ݋݉ܣ Вокруг .ݔ݋ܤ݃ݏܯ
менной, которое нужно выдать на экран, а не слово «ݐ݊ݑ݋݉ܣ».

Чтобы использовать вместе две отдельные строки в одном окне
сообщения, следует использовать операцию конкатенации ሺ&ሻ – объ-
единение (слияние) (рис. 28).

Пример 5.19.

Sub SayGoodNight()
 Name = "Саша"
 MsgBox "Пожелайте удачи! " & Name
End Sub

Рис. 28. Слияние

Переменной ܰܽ݉݁ присваивается строка "Саша". В строке кода
с ݔ݋ܤ݃ݏܯ задаётся текстовая строка "Пожелайте доброй ночи ", за
которой следует &	ܰܽ݉݁, указывая ݔ݋ܤ݃ݏܯ присоединить значение
переменной ܰܽ݉݁ к предыдущей текстовой строке (рис. 29).

Пример 5.20.

Sub BestMessage()
MsgBox "Это - замечательное
окно сообщений", vbExclamation,
"Персональное окно"

End Sub

Рис. 29. Использование
аргументов

136

5.5.8. Функция ࢞࢕࡮࢚࢛࢖࢔ࡵ

Синтаксис:

InputBox(Prompt[,Title] [,Default] [,XPos] [,YPos] [,HelpFile,Context])9

Функция выводит на экран диалоговое(модальное) окно с кноп-
кой закрытия, содержащее заданное сообщение, поле ввода, кнопки

 ожидая от ,݌݈݁ܪ и опционально заголовок и/или кнопку ݈݁ܿ݊ܽܥ ,ܭܱ
пользователя ввода текста или щелчка кнопки (табл. 21). При зада-
нии не только одного первого параметра необходимо использовать

функцию ݔ݋ܤݐݑ݌݊ܫ в выражении. Для пропуска некоторых параметров
нужно включить соответствующие разделители в виде запятых.

Возвращаемое значение типа ܵ݃݊݅ݎݐ, включающее содержимое
окна текста.

Таблица 21

Аргументы функции ࢞࢕࡮࢚࢛࢖࢔ࡵ

Аргумент Описание
1 2

Prompt Обязательный. Строковое выражение, отобража-
емое как сообщение в диалоговом окне. Макси-
мальная длина параметра ܲݐ݌݉݋ݎ составляет
приблизительно 1024 символа и зависит от ши-
рины используемых символов. Строковое значе-
ние ܲݐ݌݉݋ݎ может содержать нескольких физиче-
ских строк. Для разделения строк допускается ис-
пользование символа возврата каретки, символа
перевода строки или комбинации этих символов

Title Необязательный. Строковое выражение, отобра-
жаемое в строке заголовка диалогового окна.
Если этот параметр опущен, в строку заголовка
помещается имя приложения. Максимальное
число символов заголовка около 50

Default Необязательный. Строковое выражение, отобра-
жаемое в окне текста как ответ, используемый по
умолчанию, если пользователь не введёт другую
строку. Если этот параметр опущен, окно текста
отображается пустым

9 Русск. вариант InputBox(запрос, [название],[по умолчанию], [xpos], [ypos], [Файл

Справки, контекст])

137

Продолжение табл. 21

1 2
XPos Необязательный. Числовое выражение, задаю-

щее расстояние по горизонтали между левой гра-
ницей диалогового окна и левым краем экрана (в
твипах). Если этот параметр опущен, то диалого-
вое окно выравнивается по центру экрана по го-
ризонтали

YPos Необязательный. Числовое выражение, задаю-
щее расстояние по вертикали между верхней гра-
ницей диалогового окна и верхним краем экрана
(в твипах). Если этот параметр опущен, то диало-
говое окно помещается по вертикали на расстоя-
нии примерно на одну треть высоты экрана.

HelpFile Необязательный. Строковое выражение, опреде-
ляющее имя файла Справки, содержащего кон-
текстно-зависимую Справку о данном диалоговом
окне. Если этот параметр указан, то необходимо
задать также и параметр ݐݔ݁ݐ݊݋ܥ

Context Необязательный. Числовое выражение, опреде-
ляющее номер соответствующего раздела спра-
вочной системы. Если этот параметр указан, то
необходимо задать также и параметр ݈݁݅ܨ݌݈݁ܪ

ПРИМЕЧАНИЕ: Если указаны оба параметра ݈݁݅ܨ݌݈݁ܪ и ݐݔ݁ݐ݊݋ܥ, то
пользователь имеет возможность нажатием кла-

виши 1ܨ вызвать соответствующую контекстную
справку. Некоторые главные приложения, напри-

мер ݈݁ܿݔܧ, также автоматически добавляют в диа-
логовое окно кнопку Справка. Если пользователь

щелкает кнопку ܱܭ или нажимает ܴܧܶܰܧ, то функ-

ция ݔ݋ܤݐݑ݌݊ܫ возвращает содержимое поля ввода.

Если пользователь щелкает кнопку ݈݁ܿ݊ܽܥ, то функ-

ция возвращает пустую строку ሺ⊔)

ВАЖНО: Однако если пользователь не введёт в поле ввода строку,
то функция тоже вернёт пустую строку. В этом случае будет

затруднительно определить - какую кнопку (ܱܭ или ݈݁ܿ݊ܽܥ)
нажал пользователь. На самом деле ݈݁ܿ݊ܽܥ возвращает
 как ܿ݅ݏܽܤ	݈ܽݑݏܸ݅ который и воспринимается ,݃݊݅ݎݐ݈݈ܵݑܾܰݒ
пустая строка. Но можно воспользоваться недокументиро-

ванной функцией ܵݎݐܲݎݐ и получить указатель на строку.

138

Пример 5.21.

Dim strInput As String
strInput = InputBox("")
If StrPtr(strInput) = 0 Then
 MsgBox "Вы нажали Cancel!"
End If

Пример 5.22.

Пример демонстрирует различные способы получения сведе-
ний от пользователя с помощью функции ݔ݋ܤݐݑ݌݊ܫ. Если аргументы
-опущены, то окно диалога автоматически выравнивается по цен ݕ и ݔ
тру по соответствующим осям. Переменная ݁ݑ݈ܸܽݕܯ содержит зна-
чение, введённое пользователем, если была нажата кнопка ܱܭ или
клавиша ܴܧܶܰܧ. Если пользователь нажмёт кнопку ݈݁ܿ݊ܽܥ, то функ-
ция возвратит пустую строку.

Далее на (рис. 30 и рис. 31) приводятся примеры использования
функции InputBox.

Dim Message, Title, Default, MyValue
Message = "Введите число от 1 до 3"
Title = "Пример" ' заголовок
Default = "1" ' значение по умолчанию

Рис. 30. Значение по
умолчанию

MyValue = InputBox(Message, Title, Default)
MyValue = InputBox(Message, Title, , , ,
"DEMO.HLP", 10)

Рис. 31. Кнопка "Справка"
добавляется

автоматически

MyValue = InputBox(Message, Title, Default,
100, 100)

Размещаем верхний ле-
вый угол окна диалога в
точке 100, 100.

139

5.6. Примеры линейных программ на ࢀࡱࡺ.࡯࡮࡭࢒ࢇࢉ࢙ࢇࡼ и ࡭࡮ࢂ

Линейными называют алгоритмы, в которых операции выполня-
ются последовательно одна за другой, в естественном и единствен-
ном порядке следования. В таких алгоритмах все блоки имеют после-
довательное соединение логической связью передачи информацион-
ных потоков. В них могут использоваться все блоки, за исключением
блоков проверки условия и модификации. Линейные алгоритмы, как
правило, являются составной частью любого алгоритмического про-
цесса.

Пример 5.23. Вычисление площади круга.

а) ܲܽܶܧܰ.ܥܤܣ݈ܽܿݏ

Исходный код Окно вывода
program CircleSqr;
const
 Pi = 3.1415;

var
 r: real; // радиус круга
 S: real;// площадь круга

begin
 write('Введите радиус круга: ');
 readln(r);
 S := Pi * r * r;
 writeln('Площадь круга равна ', S);
end.

Введите радиус круга: 3
Площадь круга равна 28.2735

б) ܸܣܤ (рис. 32 и рис. 33)

Исходный код Окно вывода
Sub CircleSqr()
 Const Pi As Single = 3.14
 Dim r, s As Single
 Dim Message, Title, Default

 Message = "Введите радиус круга"
 Title = "Вычисление площади круга." ' за-
головок
 Default = "1" ' значение по умолчанию

 r = InputBox(Message, Title, Default)
 Message = "Площадь круга = "
 Title = "Вычисление площади круга." ' за-
головок

Рис. 32. Ввод значения
радиуса

140

 MsgBox Message & Str(Pi * r ^ 2), vbInfor-
mation, Title
End Sub

Рис. 33. Окно сообщения

ВНИМАНИЕ: Функция ܵ ܵ – ݎݐ ܵ ሻ. Функцияݎܾ݁݉ݑሺܰݎݐ -ሻ исполь݃݊݅ݎݐሺܵݎݐ
зуется для приведения числового выражения типа
 ሻ݊݋݅ݏݏ݁ݎ݌ݔܧሺݎݐܵ Функция .(݃݊݅ݎݐܵ тип)в строку ݃݊݋ܮ
возвращает значение ܰݎܾ݁݉ݑ, преобразованное в
текстовый тип данных ܵ݃݊݅ݎݐ. При преобразовании в
начале строки возвращаемого значения резервиру-
ется место для знака числа. Если число положи-
тельно, то в этом месте будет пробел, если число от-
рицательно, то выводится знак минус. В качестве де-
сятичного разделителя дроби функция ܵݎݐ восприни-
мает только точку. При использовании других деся-
тичных разделителей (например, запятой) следует
использовать функцию ݎݐܵܥ

Dim retval
retval = Str(123)' получаем " 123"
retval=Str(-12.3)' получаем "-12.3"

Пример 5.24. Использование вспомогательных переменных, вычис-
лить a8.

а) ܲܽܶܧܰ.ܥܤܣ݈ܽܿݏ

Исходный код Окно вывода
program Exponent;
var r: real;

begin
 write('Введите r: ');
 readln(r);
 var r2,r4,r8: real; // вспомогательные переменные
 r2 := r * r;
 r4 := r2 * r2;
 r8 := r4 * r4;
 writeln(r,' в степени 8 = ',r8);
end.

Введите r: 2
2 в степени 8 = 256

141

б) ܸܣܤ (рис. 34 и рис. 35)

Исходный код Окно вывода
' Вариант 1
Sub Exponent_var1()
 Dim r As Single
 Dim Message, Title

 Message = "Введите значение r = "
 Title = "Вычисление степени."

 r = InputBox(Message, Title)
 ' Вспомогательные переменные
 Dim r2, r4, r8 As Single

 r2 = r * r
 r4 = r2 * r2
 r8 = r4 * r4
 Message = "Результат: " & Str(r) _
 & " в степени 8 = "
 MsgBox Message & Str(r8), vbInfor-
mation, Title
End Sub

Рис. 34. Ввод значения r

Рис. 35. Окно сообщения

' Вариант 2
Sub Exponent_var2()
 Dim r As Single
 Dim Message

 Message = "Введите значение r = "
 r = InputBox(Message, "Вычисление степени.")
 Message = "Результат: " & Str(r) & " в степени 8 = "
 MsgBox Message & Str(r ^ 8), vbInformation, "Вычисление степени."
End Sub

Пример 5.25. Вычисление расстояния между двумя точками на пря-
мой.

а) ܲܽܶܧܰ.ܥܤܣ݈ܽܿݏ

Исходный код Окно вывода
program Line;

var
 a, b: real; // координаты точек
 r: real;// расстояние между точками на прямой

begin
 write('Введите координату точки a: ');

Введите координату
точки a: 5
Введите координату
точки b: 8
Расстояние между точ-
ками = 3

142

 readln(a);
 write('Введите координату точки b: ');
 readln(b);
 r := abs(a - b);
 writeln('Расстояние между точками = ', r);
end.

ВНИМАНИЕ: Функция ABS(число) - возвращает модуль (абсолютную
величину) числа. Абсолютная величина числа – это
число без знака.

б) ܸܣܤ (рис. 36 - рис. 38)

Исходный код Окно вывода
Sub Line()
 Dim a, b As Single
 Dim Message

 Message = "Введите координату точки a
= "
 a = InputBox(Message, "Координата
точки.")

 Message = "Введите координату точки b
= "
 b = InputBox(Message, "Координата
точки.")

 Message = "Результат: расстояние
между точками = "
 MsgBox Message & Str(Abs(a - b)), vbInfor-
mation, _
 "Вычисление расстояния."
End Sub

Рис. 36. Ввод значения а

Рис. 37. Ввод значения b

Рис. 38. Окно сообщения

5.7. Разветвляющиеся программы на ࢀࡱࡺ.࡯࡮࡭࢒ࢇࢉ࢙ࢇࡼ и ࡭࡮ࢂ

При составлении схем алгоритмов часто возникает необходи-
мость проведения анализа исходных данных или промежуточных ре-
зультатов вычислений и определения дальнейшего порядка выпол-
нения вычислительного процесса в зависимости от результатов этого
анализа. Алгоритмы, в которых в зависимости от выполнения некото-
рого логического условия происходит разветвление вычислений по

143

одному из нескольких возможных направлений, называют разветв-
ляющимися. Подобные алгоритмы предусматривают выбор одного
из альтернативных путей продолжения вычислений. Каждое возмож-
ное направление вычислений называется ветвью. Логическое усло-
вие называют простым, если разветвляющийся процесс имеет две
ветви, и сложным – если процесс разветвляется на три и более ветви.

Разветвляющимся называется алгоритм, при выполнении кото-
рого каждый раз последовательность действий может быть разная,
т.е. каждый раз выбирается один из нескольких путей прохождения
схемы алгоритма. Конкретный путь прохождения алгоритма называ-
ется ветвью алгоритма. Схема подобного алгоритма обязательно со-
держит хотя бы один блок (символ) "решение", который и обеспечи-
вает разветвление вычислительного процесса.

5.7.1. Условный оператор (ࢀࡱࡺ.࡯࡮࡭࢒ࢇࢉ࢙ࢇࡼ)

Представим себе классическую задачу решения квадратного
уравнения: если дискриминант положительный – тогда уравнение
имеет два разных решения, если он равен нулю – то одно, а при от-
рицательном дискриминанте вещественных решений нет вообще.
Идея здесь одна – решение квадратного уравнения зависит от дис-
криминанта, а точнее – от его знака. Или ещё задача: определить ко-
личество дней в году. Естественно, что количество дней зависит от
того, является год високосным или нет.

А вот пример геометрической задачи подобного рода: выяснить,

будут ли три числа a, b и c сторонами треугольника. Мы знаем, что

три числа будут сторонами некоего треугольника тогда и только то-

гда, когда сумма любых двух сторон этого треугольника больше тре-

тьей стороны. Здесь тоже, как мы видим, решение задачи зависит от

некоторых условий (трех неравенств).

Эти три задачи объединяет одно: здесь нельзя просто так со-

ставить программу на Паскале, чтобы задача решалась «одним ма-

хом» – из-за наличия определенных условий. Поэтому в таких слу-

чаях на помощь приходит условный оператор, который распределяет

выполнение операторов в зависимости от условий.

144

Код на PascalABC записывается следующим образом:

1
2
3
4
5
6

..................

if <условие> then <оператор1>
else <оператор2>;

..................

Эта конструкция работает по такому принципу. Сначала прове-
ряется условие (после if); если оно истинно, то выполняется опера-
тор1 (после then), в противном случае – оператор2 (после else). И
ещё: if означает «если», then – «тогда», else – «иначе». Все это заре-
зервированные слова в Pascal, всегда выделяются жирным шриф-
том. Ещё одно важное замечание: перед else никогда не ставится
точка с запятой, поскольку оно составляет единое целое с if и then.
Поясним, как используется условный оператор на простом примере:

Пример 5.26.

var

 t: real; { Температура воздуха }

begin

 writeln('Введите температуру воздуха:');

 readln(t);

 if t > 0 then writeln('вода не замерзла')

 else writeln('вода замерзла');

 readln;

end.

Здесь идет проверка температуры воздуха t – если она больше
0 (условие t > 0 после if), то выполняется оператор после then и мы
увидим ответ: «вода не замерзла»; в противном случае (то есть при
температуре от 0 и ниже: t ≤ 0 - это условие противоположное по от-
ношению к предыдущему t > 0) выполнится оператор после else и от-
вет будет другим: «вода замерзла» (без кавычек). Это пример про-
стейшей задачи на использование условного оператора.

В следующем примере учтём температуру кипения воды (при
нормальном давлении - 1000С.

145

Пример 5.27.

var

 t: real;

Begin

 writeln('Введите температуру воздуха:');

 readln(t);

 if t <= 0 then writeln('вода замерзла')

 else

 if t < 100 then writeln('вода нагревается')

 else writeln('вода закипела');

 readln

end.

Здесь надо сделать некоторые пояснения. Сначала мы прове-
ряем отрицательную или нулевую температуру (t≤0): если это дей-
ствительно так, то выполняется оператор вывода write('вода замерз-
ла')– это и есть оператор1. В противном случае (то есть, если темпе-
ратура положительная) должен быть выполнен оператор2, стоящий
после else. Но мы видим, что там находится ещё одна конструкция
условного оператора со своими if, then и else.

Тогда встает вопрос: что именно считать оператором2? А как

раз эта вся конструкция и будет оператором2, поскольку программой

она воспринимается как один оператор (условный оператор - един-

ственный оператор, состоящий из трех частей: if - then - else). Таким

образом, здесь мы будем проверять положительные температуры:

если температура меньше 100 (t < 100), то выполнится оператор вы-

вода write('вода нагревается'), иначе (от 100 и выше градусов) всту-

пит в действие write('вода закипела'). Все это будет относиться к пер-

вому else.

Бывает так, что при истинности или ложности условия (после if)
вместо выполнения одного оператора (оператора1 или оператора2)
должна выполнятся целая группа операторов. В этом случае исполь-
зуются операторные скобки begin – end, в которые записываются все
необходимые команды.

146

В общем случае запись на PascalABC такова:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

if <условие> then
 begin
 <оператор1.1>;
 <оператор1.2>;

 <оператор1.N>;
 end
else
 begin
 <оператор2.1>;
 <оператор2.2>;

 <оператор2.M>;
 end;

..................

Как видно, при истинности условия выполняется одна группа из
N операторов, а при ложности – другой набор из M операторов. Усло-
вие (между if и then) тоже может состоять из нескольких частей. Для
примера решим задачу о существовании треугольника по его сторо-
нам.

Пример 5.28.

Дано три числа: a, b и c. Определить, существует ли треуголь-
ник со сторонами, равными этим числам.

Как упоминалось выше, треугольник будет существовать при
выполнении трех условий: a+b>c, b+c>a, c+a>b. Поскольку все три не-
равенства должны выполняться одновременно, то мы их объединим
оператором and (логическое «и»). В итоге получим:

Program treugolnik;
var
 a, b, c: real;

begin
 writeln('Введите три положительных числа:');
 readln(a, b, c);
 write('Треугольник со сторонами ', a, ', ', b, ' и ', c);
 { Проверяем условие существования треугольника: }
 if (a+b>c)and(b+c>a)and(c+a>b) then writeln(' существует')
 else writeln(' не существует');
 readln
end.

147

Пример 5.29.

Даны два числа. Вывести большее из них.
var
 a, b: real;

begin
 writeln('Введите два числа:');
 readln(a, b);
 if a = b then writeln('Эти числа равны')
 else begin
 write('Большее из этих чисел: ');
 if a < b then writeln(b)
 else writeln(a)
 end;
 readln
end.

Пример 5.30.

Упорядочение двух значений по возрастанию
var
 x,y: integer;
 v: integer;
begin
 write('Введите x,y: ');
 readln(x,y);
 if x>y then
 begin
 v := x;
 x := y;
 y := v
 end;
 writeln('Результат упорядочения по возрастанию: ',x,' ',y);
end.

Пример 5.31.

Нахождение корней квадратного уравнения

var

 a,b,c: real;
 x1,x2,D: real;

begin
 writeln('Введите коэффициенты a, b, c квадратного уравнения
a*x*x+b*x+c=0: ');
 readln(a,b,c);
 D := b*b - 4*a*c;

148

 if D<0 then
 writeln('Корней нет')
 else if D=0 then
 begin
 x1 := -b/2/a;
 writeln('Корни совпадют: x1=x2=',x1);
 end
 else
 begin
 x1 := (-b-sqrt(D))/2/a;
 x2 := (-b+sqrt(D))/2/a;
 writeln('Корни: x1=',x1:0:3,' x2=',x2:0:3);
 end;
end.

5.7.2. Операторы условного и безусловного перехода (࡭࡮ࢂ)

Операторы условного перехода – одни из самых важных и часто
используемых элементов в языках программирования. Общий прин-
цип их работы прост: проверяется соответствие каким-то условиям
(истинность или ложность каких-либо выражений) и в зависимости от
этого выполнение программы направляется по одной или другой
ветви. В VBA предусмотрено два оператора условного перехода: If…
Then... Else и Select Case.

Оператор If… Then... Else - самый популярный у программистов.
Полный его синтаксис выглядит так:

If Условие Then
 Команды1
[ElseIf Условия N Then
 Команды N]
[Else
 Команды2]
End If

При этом:

 Условие – выражение, которое проверяется на истинность.
Если оно истинно, то выполняются Команды1, если ложно –
Команды2.

 УсловияN – дополнительные условия, которые также можно
проверить. В случае, если они выполняются (выражение
УсловияN истинно), то выполняются КомандыN.

Оператор If…Then... Else применяется:

149

 когда нужно проверить на соответствие одному условию и в
случае соответствия сделать какое-то действие:

If nTemperature < 10 Then
 MsgBox "Одеть куртку"
End If

 когда нужно сделать то же, что и в предыдущем примере, а в
случае несоответствия выполнить другое действие:

If nTemperature < 10 Then
 MsgBox "Одеть куртку"
Else
 MsgBox "Одеть ветровку"
End If

 когда нужно проверить на соответствие нескольким условиям
(обратите внимание на использование логических операто-
ров):

If (nTemperature < 10) And (bRain = True) Then
 MsgBox "Одеть куртку и взять зонтик"
End If

 когда в случае, если первая проверка вернула False, нужно
проверить на соответствие еще нескольким условиям (в этом
случае удобно использовать ElseIf):

If (bIGoInCar = True) Then
 MsgBox "Одеться для машины"
ElseIf nTemperature < 10 Then
 MsgBox "Одеть куртку"
Else
 MsgBox "Можно идти в рубашке"
End If

В этом примере, поскольку bIGoInCar – переменная типа
Boolean и сама по себе принимает значения True или False, первая
строка может выглядеть так:

If bIGoInCar Then …

Некоторые замечания по использованию If…Then... Else:

 ключевое слово Then должно находиться в одной строке с If и
условием. Если вы перенесете его на следующую строку, то
будет выдано сообщение об ошибке;

 если разместить команду, которую нужно выполнить при ис-
тинности проверяемого условия, на одной строке с If и Then,

150

то End If можно не писать:

If nTemperature < 10 Then MsgBox "Одеть куртку"

 если же вы используете несколько команд или конструкции
Else/ElseIf, то End If в конце нужно писать обязательно – иначе
возникнет синтаксическая ошибка.

 для выражения If…Then настоятельно рекомендуется ис-
пользовать отступы для выделения блоков команд. Иначе чи-
тать код будет трудно.

 операторы If…Then можно вкладывать друг в друга:

If MyVar = 5 Then
 MsgBox “MyVar = 5”
 If MyVar = 10 Then
 MsgBox “MyVar = 10”
 End If
End If

Пример 5.32.

Дано три числа: a, b и c. Определить, существует ли треуголь-
ник со сторонами, равными этим числам

Sub treugolnik()
 Dim a As Integer, b As Integer, c As Integer
 a = 2
 b = 3
 c = 2
 If (a + b > c) And (b + c > a) And (c + a > b) Then
 MsgBox "Треугольник со сторонами: a = " & _
 Str(a) & " b = " & Str(b) & " с = " & Str(с) & " существует."
 Else
 MsgBox "Треугольник со сторонами: a = " & _
 Str(a) & " b = " & Str(b) & " с = " & Str(с) & " не существует."
 End If
End Sub

Пример 5.33.

Даны два числа. Вывести большее из них

Sub primer()
 Dim a As Integer, b As Integer
 a = 21
 b = 3

 If a = b Then
 MsgBox "Числа равны"
 Else

151

 If a < b Then
 MsgBox "Число a меньше числа b"
 Else
 MsgBox "Число a больше числа b"
 End If
 End If
End Sub

Пример 5.34.

Упорядочение двух значений по возрастанию

Sub primer()
 Dim x As Integer, y As Integer, c As Integer
 x = 21
 y = 3

 If x > y Then
 c = x
 x = y
 y = c
 End If

 MsgBox "Результат упорядочения по возрастанию: " & Str(x) & _
 "; " & Str(y)
End Sub

Пример 5.35.

Нахождение корней квадратного уравнения

Sub primer()
 Dim a As Single, b As Single, c As Single
 Dim x1 As Single, x2 As Single, D As Single

 a = 1
 b = -4
 c = 3
 D = b ^ 2 - 4 * a * c

 If D < 0 Then
 MsgBox " Корней нет"
 ElseIf D = 0 Then
 x1 = -b / 2 / a
 MsgBox "Корни свпадают: x1=x2= " & Str(x1)
 Else
 x1 = (-b - Sqr(D)) / 2 / a
 x2 = (-b + Sqr(D)) / 2 / a
 MsgBox "Корни: x1= " & Str(x1) & ", x2= " & Str(x2)
 End If
End Sub

152

5.8. Циклические программы

Циклом в программировании называют повторение одних и тех
же действий (шагов). Последовательность действий, которые повто-
ряются в цикле, называют телом цикла.

На рис. 39 и рис. 40 представлены блок-схемы циклов с пред-
условием и с постусловием соответственно, которые называют
условными циклическими алгоритмами. Применение блок-схем по-
дробно описано в учебном пособии [3].

Рис. 41. Цикл без условия

Тело цикла

 i = in, ik,
di

Рис. 39. Цикл с предусловием

Услов и е?

Т ело ц и кла

Рис. 40. Цикл с постусловием

У сло в и е?

Т ело ц и кла

153

Нетрудно заметить, что эти циклы взаимозаменяемы. Но есть и
отличия:

• в цикле с предусловием условие проверяется до тела цикла,
в цикле с постусловием – после тела цикла;

• в цикле с постусловием тело цикла выполняется хотя бы
один раз, в цикле с предусловием тело цикла может не вы-
полняться ни разу;

• в цикле с предусловием проверяется условие продолжения
цикла, в цикле с постусловием – условие выхода из цикла.

При написании уловных циклических алгоритмов следует пом-
нить следующее:

• во-первых, чтобы цикл имел шанс когда-нибудь закончиться,
содержимое его тела должно обязательно влиять на усло-
вие цикла;

• во-вторых, условие должно состоять из корректных выраже-
ний и значений, определенных еще до первого выполнения
тела цикла.

Кроме того, существует так называемый безусловный цикличе-
ский алгоритм (рис. 41), который удобно использовать, если из-
вестно, сколько раз необходимо выполнить тело цикла.

Выполнение безусловного циклического алгоритма начинается
с присвоения переменной, например i, стартового значения in. Затем
следует проверка, не превосходит ли переменная i конечного значе-
ния ik. Если это так, то цикл считается завершенным и управление
передается следующему за телом цикла оператору. В противном слу-
чае выполняется тело цикла и переменная i меняет свое значение в
соответствии с указанным шагом di. Далее снова производится про-
верка значения переменной i, и алгоритм повторяется. В принципе
безусловный циклический алгоритм можно заменить любым услов-
ным.

Переменную i в данном контексте, а именно при использовании
в циклическом алгоритме, называют параметром цикла, так как эта
переменная изменяется внутри цикла по определенному закону и
влияет на его окончание. Принято также ее называть – счетчик цикла.

154

5.8.1. Цикл с предусловием (ࢀࡱࡺ.࡯࡮࡭࢒ࢇࢉ࢙ࢇࡼ)

Синтаксис:

<оператор while>::= while<логическое выражение> do <оператор>

Общий вид:

while p do s;

Логическое выражение управляет количеством повторений
цикла. Значение переменных, входящих в логическое, должно зада-
ваться до оператора цикла и изменяться в теле цикла, поэтому тело
цикла в основном оформляется как составной оператор. Оператор
while выполняется до тех пор, пока выражение не станет равным
false. Если выражение тождественно true (while true do s;), то цикл бу-
дет выполняться бесконечно. Если выражение с самого начала есть
false, то тело цикла не выполняется ни разу.

Рассмотрим пару примеров использования оператора while.

Пример 5.36.

Даны числа x и y (y > 1). Необходимо получить все члены бес-
конечной последовательности x, x2, x3, …, которые меньше y (рис. 42).

program s1;

Uses crt;

var
 x, y, z: real;

begin
 TextBackground(15); //Задаёт в окне консоли белый фон
 TextColor(0); //Задаёт шрифту черный цвет
 clrscr;
 read(x, y);
 z := x;
 while z < y do
 begin
 writeln(z);
 z := z * x

До тех пор, пока…

…логическое выражение не станет
FALSE…

…действие s;

…выполнять……

155

 end;
end.

В примере в качестве значений x и y заданы числа 3 и 400 соот-
ветственно и, согласно условиям задачи, вычислены члены последо-
вательности: 3 (31), 9 (32), 27 (33), 81 (34) и 243 (35).

Пример 5.37.

Вычисление числа π (пи) методом Грегори.

По формуле Грегори число π можно вычислить следующим об-
разом: 1 = 4/ߨ	– 1/3 ൅ 1/5– 1/7 ൅⋯	, причем вычисления будут проис-
ходить до тех пор, пока абсолютная величина очередного члена
представленного ряда не станет меньше 0,5.10-7. Правило формиро-
вания этой последовательности станет яснее, если ее первый член
представить в виде 1/1.

program pi;

Uses crt;

const
 c = 0.5E-7;

var
 a, sum: real;
 sign: integer;
 n: longint;

begin

 TextBackground(15); //Задаёт в окне консоли белый фон

Рис. 42. Программа вычисления последовательностистепеней

156

 TextColor(0); //Задаёт шрифту черный цвет

 clrscr;

 sign := -1;

 sum := 1.0;

 a := sum;

 n := 1;

 while abs(a) > c do

 begin

 a := sign / (2 * n + 1);

 sum := sum + a;

 sign := -sign;

 n := n + 1;

 end;

 sum := 4 * sum;

 writeln('Pi = ', sum);

end.

В представленной программе (рис. 43) константа с определяет
точность вычисления числа π; переменная а содержит значение оче-
редного члена ряда 1	– 1/3 ൅ 1/5– 1/7 ൅⋯ ; значение переменной
sum равно текущей сумме вычисленных членов ряда (т.е. приближен-
ному значению ¼ числа π); переменная sign содержит знак очеред-
ного члена ряда; переменная n служит для нумерации членов ряда (и
итераций оператора while).

Рис. 43. Расчёт числа π

157

Переменная n объявлена с типом данных Longint (см. табл. 4).
Это целочисленный тип данных, отличающийся от типа Integer только
диапазоном допустимых значений. В рассмотренной программе для
вычисления числа π с точностью 0,5.10-7 оператору while потребуется
10 000 001 циклов. Указанное число вне диапазона допустимых зна-
чений типа Integer, и, если переменную n объявить с типом данных
Integer, то при выполнении программы произойдет так называемое
«зацикливание». Для обнаружения этого достаточно ввести (вре-
менно) в составной оператор while дополнительный оператор вывода
writeln(n). В результате номер каждого очередного цикла выводится
на экран и это позволит увидеть, что временами данное значение
становится отрицательным, т.е. после того, как n принимает значение
32 767 (наибольшее из допустимого диапазона для типа Integer), при
прибавлении очередной единицы при следующей итерации перемен-
ная n становится равной -32 768.

В программе используется стандартная функция abs() – возвра-
щающая абсолютное значение (модуль) переданного ей.

5.8.2. Цикл с постусловием (ࢀࡱࡺ.࡯࡮࡭࢒ࢇࢉ࢙ࢇࡼ)

Синтаксис:

<оператор repeat>::= repeat<оператор>[,<оператор>]…
 until<логическое выражение>

Значение логического выражения должно изменяться в цикле,
но, в отличие от оператора while, в этом операторе логическое выра-
жение вычисляется и проверяется в конце цикла. Последователь-
ность операторов между REPEAT и UNTIL выполняется повторно до
тех пор, пока логическое выражение, вычисляемое после каждой ите-
рации, не примет значение true. В отличие от оператора while, опера-
тор repeat выполнится по крайне мере один раз (рис. 44).

Если условие p тождественно false (repeat s until false), то цикл

будет бесконечным.

Для иллюстрации разницы между операторами цикла while и
repeat рассмотрим соответствующие фрагменты программ, вычисля-
ющие степени числа 3 в диапазоне между 1 и 300.

158

Цикл while
a := 3;
while a < 300 do
 begin
 writeln(a);
 a := a * 3
 end;

Цикл repeat
a := 3;
repeat
 writeln(a);
 a := a * 3
until a >= 300;

Прежде всего бросается в глаза, что условия повторения цикла

для двух случаев противоположны. Это объясняется тем, что в опе-

раторе while цикл выполняется до тех пор, пока условие не примет

значение false, а в операторе repeat – пока условие не примет значе-

ние true. Также следует обратить внимание на то, что тело цикла

repeat не требуется заключать в операторные скобки begin…end.

Если в операторе while после ключевого слова do выполняется един-

ственный оператор (и при циклическом выполнении нескольких дей-

ствий приходится несколько операторов объединять в составной опе-

ратор), то в операторе repeat между ключевыми словами repeat и until

можно ввести любое количество операторов без необходимости за-

ключать их в операторные скобки.

Наконец, в операторе repeat после последнего оператора в теле

цикла нет точки с запятой (;). Это еще одна особенность оператора

repeat – перед ключевым словом until точка с запятой не обязательна

(рис. 45).

Рис. 44. Цикл с постусловием

159

Пример 5.38.

Вычисление квадратного корня из неотрицательного числа.

Для вычисления квадратного корня из неотрицательного числа
х необходим бесконечный ряд А1, А2, А3, …, где

2

1
1



х

A ;)(
2

1

1
1


 

i
ii A

x
AА , где i = 2, 3, 4, … .

Дело в том, что разница между очередным членом этого ряда и
величиной корня квадратного от числа х по мере увеличения числа i
становится все меньше.

Предположим, требуется определить корень квадратный от 2
(он приблизительно равен 1,4142135). Вычислим несколько первых
членов ряда А1, А2, А3, … :

5.1
2

12
1 


A ,

4166666.1)
5.1

2
5.1(

2

1
2 A ,

"
"
	

". "	

Как видно из приведенных расчетов, величина Аi становится
все ближе значению корня квадратного от двух.

4142156.1)
4166666.1

2
4166666.1(

2

1
3 A

Рис. 45. Применение операторов While и Repeat

160

Программа (рис. 46) вычисляет квадратные корни для 10 произ-

вольных неотрицательных чисел. Это осуществляется оператором

while и переменной nv.

Оператором read(x) вводим число, из которого предстоит из-

влечь квадратный корень. Оператор ܽ ∶ൌ ሺݔ ൅ 1ሻ/2; вычисляет значе-

ние первого члена ряда. Далее оператором repeat вычисляем значе-

ния членов ряда, начиная со второго, до тех пор, пока не будет вы-

полнено условие завершения цикла (абсолютная величина разницы

между квадратом значения очередного члена ряда и значением пе-

ременной х станет меньше 0.000001 – точность вычисления):

program root;

Uses crt;

var
 a, x: real;
 nv: integer = 1;

begin
 Clrscr;
 while nv <= 10 do
 begin
 writeln;
 write('Корень из ');
 read(x);
 a := (x + 1) / 2;
 repeat
 a := 0.5 * (a + x / a)
 until abs(sqr(a) - x) < 0.000001;
 writeln(' = ', a);
 nv := nv + 1
 end;
end.

161

5.8.3. Оператор цикла FOR (ࢀࡱࡺ.࡯࡮࡭࢒ࢇࢉ࢙ࢇࡼ)

Синтаксис:

<оператор for>::=for<параметр цикла>:=<список цикла>do<оператор>
<параметр цикла>::=<идентификатор>
<список цикла>::=<первое значение>to<последнее значение>|
 или <первое значение>downto<последнее значение>
<первое значение>::=<выражение>
<последнее значение>::=<выражение>
<оператор> - оператор, выполняемый многократно (в цикле).

Оператор цикла без условия FOR (его еще называют оператор
цикла с параметром) выглядит следующим образом:

for i := a to b do s;

При выполнении этого оператора сначала вычисляется некото-

рое начальное значение а, которое присваивается переменной i,

называемой параметром цикла. Важно помнить – в операторе цикла

Рис. 46. Программа вычисления квадратного корня

От… …до… …выполнять…

162

параметру цикла присваивается некоторое значение, т.е. тут упо-

требляется оператор присваивания. Параметр цикла – переменная,

следовательно, ее имя – это идентификатор, и он может быть, как

любой символ, так и их сочетание, допустимое с точки зрения синтак-

сиса PascalABC.NET (например, i, j, ii, jj06 и т.д.). Затем вычисляется

конечное значение b и проверяется, имеет ли место равенство i = b.

Если равенства нет (i < b), то выполняется оператор s, который может

быть составным, и переменная i увеличивается на единицу. Затем

повторяется проверка равности переменной i значению b. В случае

равенства (i = b) оператор цикла выполняет оператор s и передает

управление оператору, следующему за оператором for, в противном

случае оператор цикла повторяется до тех пор, пока не будет достиг-

нуто равенство i=b.

Параметр цикла i, а также начальное и конечное значения (а и

b) могут принадлежать любому порядковому типу (например, Integer

или Char), но при этом они должны быть все одного типа. Если

начальное значение превышает, то оператор s не выполняется ни

разу.

В теле цикла запрещается явно изменять значение параметра

цикла, например, с помощью оператора присваивания.

В рассмотренном случае параметр цикла изменял значения по

возрастанию. В случае убывания значений параметра цикла, т.е. ко-

гда начальное значение превышает конечное значение, применяют

другую форму оператора for:

for i := a downto b do s;

Здесь, чтобы выполнялся оператор s, начальное значение а

должно превышать конечное значение b. Кроме того, в этом случае

параметр цикла с каждой итерацией уменьшается на единицу, пока

не становится равным конечному значению.

Оператор цикла с параметром следует использовать тогда, ко-

гда заранее точно известно, сколько раз должно быть выполнено

тело цикла:

163

for i := 1 to 5 do z := sqr(x);
for i := m downto с do write(i);

Во втором примере (и конкретно в этом примере) оператор
цикла с параметром использован для вывода строчных букв латин-
ского алфавита в обратном порядке (от m до с).

Возможно использование вложенных циклов. Это подразуме-
вает, что существуют внешний цикл и один или несколько внутренних
циклов. Каждое повторение внешнего цикла означает завершение
всех внутренних циклов; при этом всем выражениям, которые управ-
ляют внутренними циклами, вновь присваиваются начальные значе-
ния.

5.8.4. Оператор Break, Continue (ࢀࡱࡺ.࡯࡮࡭࢒ࢇࢉ࢙ࢇࡼ)

Оператор break осуществляет немедленный выход из циклов
while, repeat и for. Его можно использовать только внутри тела цикла.

Оператор continue начинает новую итерацию цикла, даже если
предыдущая не была завершена. Его можно использовать только
внутри тела цикла.

Пример 5.39

Дано натуральное число N. Определить, является ли оно про-
стым10. Алгоритм решения этой задачи заключается в том, что число
N делится на параметр цикла i, изменяющийся в диапазоне от 2 до
N/2. Если среди значений параметра не найдется ни одного числа,
делящего заданное число нацело, то N – простое число, иначе оно
таковым не является. В алгоритме (рис. 47) предусмотрено два вы-
хода из цикла: первый – при исчерпании всех значений параметра,
второй – досрочный. Нет смысла продолжать цикл, если будет
найден хотя бы один делитель из указанной области изменения па-
раметра цикла (рис. 48).

10 Натуральное число N называется простым, если оно делится нацело без остатка только

на единицу и N.

164

program prostoe;

Uses crt;

var
 N, i: integer;
 Pr: boolean;

begin
 clrscr;
 write('N=');
 readln(N);
 Pr := true; {Предположим, что число простое}
 for i := 2 to N div 2 do {Операции div и mod}
 if N mod i = 0 then {Если найден хоть один делитель, то…}
 begin
 Pr := false; {Число простым не является и}
 break; {досрочный выход из цикла}
 end;
 if Pr then writeln('Число ', N, ' - простое')
 else writeln('Число ', N, ' – простым не является');
end.

Рис. 47. Блок-схема определения простого числа

Начало

Ввод N

Pr := истина

I := 2, N div 2

N mod i = 0

Pr := ложь

.T.

.F.
Pr

N ‐ простое
N – не

является
простым

.F..T.

Начало

165

5.8.5. Циклы в ࡭࡮ࢂ

Встречаются ситуации, когда от программы VBA требуется со-
вершить несколько раз подряд один и тот же набор действий (то есть
повторить несколько раз один и тот же блок кода). Это может быть
сделано при помощи циклов VBA.

К циклам VBA относятся:

 цикл For;

 цикл Do While;

 цикл Do Until.

Далее мы подробно рассмотрим каждый из этих циклов.

Оператор цикла «For» в Visual Basic.

Структура оператора цикла For в Visual Basic может быть орга-
низована в одной из двух форм: как цикл For … Next или как цикл For
Each.

Рис. 48. Программа определения простого числа

166

5.8.5.1. Цикл For…Next

Цикл For … Next использует переменную, которая последова-
тельно принимает значения из заданного диапазона. С каждой сме-
ной значения переменной выполняются действия, заключённые в
теле цикла. Это легко понять из простого примера:

For i = 1 To 10
 Total = Total + iArray(i)
Next i

В этом простом цикле For … Next используется переменная i,
которая последовательно принимает значения 1, 2, 3, … 10, и для
каждого из этих значений выполняется код VBA, находящийся внутри
цикла. Таким образом, данный цикл суммирует элементы массива
iArray в переменной Total.

В приведённом выше примере шаг приращения цикла не ука-
зан, поэтому для пошагового увеличения переменной i от 1 до 10 по
умолчанию используется приращение 1. Однако в некоторых случаях
требуется использовать другие значения приращения для цикла. Это
можно сделать при помощи ключевого слова Step, как показано в сле-
дующем простом примере:

For d = 0 To 10 Step 0.1
 dTotal = dTotal + d
Next d

Так как в приведённом выше примере задан шаг приращения
равный 0.1, то переменная dTotal для каждого повторения цикла при-
нимает значения 0.0, 0.1, 0.2, 0.3, … 9.9, 10.0.

Для определения шага цикла в VBA можно использовать отри-
цательную величину, например, вот так:

For i = 10 To 1 Step -1
 iArray(i) = i
Next i

Здесь шаг приращения равен -1, поэтому переменная i с каж-
дым повторением цикла принимает значения 10, 9, 8, … 1.

5.8.5.2. Цикл For Each

Цикл For Each похож на цикл For … Next, но вместо того, чтобы
перебирать последовательность значений для переменной-счёт-
чика, цикл For Each выполняет набор действий для каждого объекта

167

из указанной группы объектов. В следующем примере при помощи
цикла For Each выполняется перечисление всех листов в текущей ра-
бочей книге Excel:

Dim wSheet As Worksheet
…
For Each wSheet in Worksheets
 MsgBox "Найден лист: " & wSheet.Name
Next wSheet

5.8.5.3. Оператор Exit For

Оператор Exit For применяется для прерывания цикла. Как
только в коде встречается этот оператор, программа завершает вы-
полнение цикла и переходит к выполнению операторов, находящихся
в коде сразу после данного цикла. Это можно использовать, напри-
мер, для поиска определённого значения в массиве (см. раздел
5.8.6). Для этого при помощи цикла просматривается каждый элемент
массива. Как только искомый элемент найден, просматривать
остальные нет необходимости – цикл прерывается.

Применение оператора Exit For продемонстрировано в следую-
щем примере. Здесь цикл перебирает 100 записей массива и сравни-
вает каждую со значением переменной dVal. Если совпадение
найдено, то цикл прерывается:

For i = 1 To 100

 If dValues(i) = dVal Then

 IndexVal = i

 Exit For

 End If

Next i

5.8.5.4. Цикл Do While

Цикл Do While выполняет блок кода до тех пор, пока выполня-
ется заданное условие. Далее приведён пример процедуры Sub, в
которой при помощи цикла Do While выводятся последовательно
числа Фибоначчи, не превышающие 1000 (рис. 49).

В приведённом примере условие iFib_Next < 1000 проверяется
в начале цикла. Поэтому если бы первое значение iFib_Next было бы
больше 1000, то цикл бы не выполнялся ни разу:

168

'Процедура Sub выводит числа Фибоначчи не превышающие 1000

Sub Fibonacci()

 Dim i As Integer

 'счётчик для обозначения позиции элемента в последовательности

 Dim iFib As Integer

 'хранит текущее значение последовательности

 Dim iFib_Next As Integer

 'хранит следующее значение последовательности

 Dim iStep As Integer

 'хранит размер следующего приращения

 'инициализируем переменные i и iFib_Next

 i = 1

 iFib_Next = 0

 'цикл Do While будет выполняться до тех пор, пока значение

 'текущего числа Фибоначчи не превысит 1000

 Do While iFib_Next < 1000

 If i = 1 Then

 'особый случай для первого элемента последовательности

 iStep = 1

 iFib = 0

 Else

 'сохраняем размер следующего приращения перед тем, как

 перезаписать текущее значение последовательности

 iStep = iFib

 iFib = iFib_Next

 End If

 'выводим текущее число Фибоначчи в столбце A активного

 рабочего листа в строке с индексом i

 Cells(i, 1).Value = iFib

 'вычисляем следующее число Фибоначчи и увеличиваем ин

 декс позиции элемента на 1

 iFib_Next = iFib + iStep

 i = i + 1

 Loop

End Sub

169

Другой способ реализовать цикл Do While – поместить условие
не в начале, а в конце цикла. В этом случае цикл будет выполнен хотя
бы раз не зависимо от того, выполняется ли условие.

Схематично такой цикл Do While с проверяемым условием в
конце будет выглядеть вот так:

Do
 ...
Loop While iFib_Next < 1000

5.8.5.5. Цикл Do Until

Цикл Do Until очень похож на цикл Do While: блок кода в теле
цикла выполняется раз за разом до тех пор, пока заданное условие
выполняется (результат условного выражения равен True). В следу-
ющей процедуре Sub при помощи цикла Do Until извлекаются значе-
ния из всех ячеек столбца A рабочего листа до тех пор, пока в
столбце не встретится пустая ячейка:

iRow = 1
Do Until IsEmpty(Cells(iRow, 1))

Рис. 49. Программа Числа Фибоначчи (Excel VBA)

170

 'Значение текущей ячейки сохраняется в массиве dCellValues
 dCellValues(iRow) = Cells(iRow, 1).Value
 iRow = iRow + 1
Loop

В приведённом выше примере условие IsEmpty(Cells(iRow, 1))
находится в начале конструкции Do Until, следовательно, цикл будет
выполнен хотя бы один раз, если первая взятая ячейка не пуста.

Однако, как было показано в примерах цикла Do While, в неко-
торых ситуациях нужно, чтобы цикл был выполнен хотя бы один раз,
не зависимо от первоначального результата условного выражения. В
таком случае условное выражение нужно поместить в конце цикла
вот так:

Do
 ...
Loop Until IsEmpty(Cells(iRow, 1))

Пример 5.40.

Дано . Определить с точностью .

ݕ ൌ 	
1
2
൅
1
4
൅
1
8
൅⋯൅

1
2௡

൅⋯

Sub ryad()
 Dim y As Single
 Dim n As Integer
 Dim eps As Single
 Dim sl As Single
 y = 0
 n = 1
 eps = Cells(1, 2)

 Do
 sl = 1 / (2 ^ n)
 Cells(n + 1, 10) = sl
 y = y + sl
 n = n + 1
 Loop While Abs(sl) > eps

 Cells(4, 2) = y
End Sub

Блок-схема программы
представлена на рис. 50.

Рис. 50. Блок-схема программы
с циклом с постусловием

N , Y , E p s , s l

Y = 0
N = 1

E p s = c e l l s (� �

Н а ч а л о

S l = 1 / (2 ^ n)
Y = y + s l
N = n + 1

| S l | > E p s

Y

К о н е ц

. T .

. F .

171

5.8.6. Массивы (ࢀࡱࡺ.࡯࡮࡭࢒ࢇࢉ࢙ࢇࡼ)

Массив представляет собой набор элементов одного типа, каж-
дый из которых имеет свой номер, называемый индексом (индексов
может быть несколько, тогда массив называется многомерным).

Массивы в PascalABC.NET делятся на статические и динамиче-
ские.

При выходе за границы изменения индекса в PascalABC.NET
всегда генерируется исключение.

Статические массивы

Статические массивы в отличие от динамических задают свой
размер непосредственно в типе. Память под такие массивы выделя-
ется сразу при описании.

Тип статического массива конструируется следующим образом:

array [тип индекса1, ..., тип индексаN] of базовый тип

Тип индекса должен быть порядковым. Обычно тип индекса яв-

ляется диапазонным и представляется в виде ܽ. . ܾ, где ܽ и ܾ - кон-
стантные выражения целого, символьного или перечислимого типа.
Например:

type
 MyEnum = (w1,w2,w3,w4,w5);
 Arr = array [1..10] of integer;
var
 a1,a2: Arr;
 b: array ['a'..'z',w2..w4] of string;
 c: array [1..3] of array [1..4] of real;

При описании можно также задавать инициализацию массива
значениями:

var
 a: Arr := (1,2,3,4,5,6,7,8,9,0);
 cc: array [1..3,1..4] of real := ((1,2,3,4), (5,6,7,8), (9,0,1,2));

Статические массивы одного типа можно присваивать друг
другу, при этом будет производиться копирование содержимого од-
ного массива в другой:

a1 := a2;

172

Процедура ݁ݐ݅ݎݓ выводит статический массив, заключая эле-
менты в квадратные скобки и разделяя их запятыми:

var a: Arr := (1,2,3,4,5,6,7,8,9,0);
var m := array [1..3,1..3] of integer :=
 ((1,2,3),(4,5,6),(7,8,9));

writeln(a); [1,2,3,4,5]
writeln(m); [[1,2,3],[4,5,6],[7,8,9]]

Для доступа к нижней и верхней границам размерности одно-

мерного массива используются функции ݓ݋ܮ и ݄݃݅ܪ.

Динамические массивы

Тип динамического массива конструируется следующим обра-
зом:

array of тип элементов (одномерный массив)
array [,] of тип элементов (двумерный массив)

и т.д.

Переменная типа «динамический массив» представляет собой
ссылку. Поэтому динамический массив нуждается в инициализации
(выделении памяти под элементы).

Для выделения памяти под динамический массив используется

два способа. Первый способ использует операцию ݊݁ݓ в стиле вы-
зова конструктора класса:

var
 a: array of integer;
 b: array [,] of real;
begin
 a := new integer[5];
 b := new real[4,3];
end.

Данный способ хорош тем, что позволяет совместить описание
массива и выделение под него памяти:

var
 a: array of integer := new integer[5];
 b: array [,] of real := new real[4,3];

Описание типа можно при этом опускать - тип автовыводится:

var
 a := new integer[5];
 b := new real[4,3];

173

Второй способ выделения памяти под динамический массив ис-

пользует стандартную процедуру ݄ܵ݁ݐ݃݊݁ܮݐ:

SetLength(a,10);
SetLength(b,5,3);

Элементы массива при этом заполняются значениями по умол-
чанию.

Процедура ݄ܵ݁ݐ݃݊݁ܮݐ обладает тем преимуществом, что при её
повторном вызове старое содержимое массива сохраняется.

Можно инициализировать динамический массив при выделении

под него память операцией ݊݁ݓ:

a := new integer[3](1,2,3);
b := new real[4,3] ((1,2,3),(4,5,6),(7,8,9),(0,1,2));

Инициализацию динамического массива в момент описания
можно проводить в сокращённой форме:

var
 a: array of integer := (1,2,3);
 b: array [,] of real := ((1,2,3),(4,5,6),(7,8,9),(0,1,2));
 c: array of array of integer := ((1,2,3),(4,5),(6,7,8));

При этом происходит выделение памяти под указанное справа
количество элементов.

Инициализация одномерного массива проще всего осуществля-
ется стандартными функциями Seq..., которые выделяют память нуж-
ного размера и заполняют массив указанными значениями:

var a := Arr(1,3,5,7,8); // array of integer
var s := Arr('Иванов','Петров','Сидоров'); // array of string
var b := ArrFill(777,5); // b = [777,777,777,777,777]
var r := ArrRandom(10); // заполнение 10 случайными
 // целыми в диапазоне от 0 до
 // 99

В таком же стиле можно инициализировать массивы массивов:

var a := Arr(Arr(1,3,5),Arr(7,8),Arr(5,6)); // array of array of integer

Длина динамического массива

Динамический массив помнит свою длину (n-мерный динамиче-
ский массив помнит длину по каждой размерности). Длина массива
(количество элементов в нем) возвращается стандартной функцией
Length или свойством Length:

174

l := Length(a);
l := a.Length;

Для многомерных массивов длина по каждой размерности воз-
вращается стандартной функцией Length с двумя параметрами или
методом GetLength(i):

l := Length(a,0);
l := a.GetLength(0);

Ввод динамического массива

После выделения памяти ввод динамического массива можно
осуществлять традиционно в цикле:

for var i:=0 to a.Length-1 do
 read(a[i]);

Ввод динамического массива можно осуществлять с помощью
стандартной функции ReadSeqInteger:

var a := ReadSeqInteger(10);

При этом под динамический массив выделяется память нужного
размера.

Вывод динамического массива

Процедура write выводит динамический массив, заключая эле-
менты в квадратные скобки и разделяя их запятыми:

var a := Arr(1,3,5,7,9);
writeln(a); // [1,3,5,7,9]

n-мерный динамический массив выводится так, что каждая раз-
мерность заключается в квадратные скобки:

var m := new integer[3,3] ((1,2,3),(4,5,6),(7,8,9));
writeln(m); // [[1,2,3],[4,5,6],[7,8,9]]

Динамический массив можно выводить также методом расши-
рения Print или Println:

a.Println;

При этом элементы по умолчанию разделяются пробелами, но
можно это изменить, задав параметр Print, являющийся разделите-
лем элементов. Например:

a.Print(NewLine);

выводит каждый элемент на отдельной строке.

175

Массивы массивов

Если объявлен массив массивов

var с: array of array of integer;

то его инициализацию можно провести только с помощью SetLength:

SetLength(с,5);

for i := 0 to 4 do

 SetLength(c[i],3);

Для инициализации такого массива с помощью new следует
ввести имя типа для array of integer:

type IntArray = array of integer;

var с: array of IntArray;

...

c := new IntArray[5];

for i := 0 to 4 do

 c[i] := new integer[3];

Инициализацию массива массивов можно также проводить в со-
кращенной форме:

var
 c: array of array of integer := ((1,2,3),(4,5),(6,7,8));

Присваивание динамических массивов

Динамические массивы одного типа можно присваивать друг
другу, при этом обе переменные-ссылки будут указывать на одну па-
мять:

var a1: array of integer;
var a2: array of integer;
a1 := a2;

Следует обратить внимание, что для динамических массивов
принята структурная эквивалентность типов: можно присваивать друг
другу и передавать в качестве параметров подпрограмм динамиче-
ские массивы, совпадающие по структуре.

Чтобы одному динамическому массиву присвоить копию другого
массива, следует воспользоваться стандартной функцией Copy:

a1 := Copy(a2);

176

5.8.7. Массивы (࡭࡮ࢂ)

Массив VBA – это тип переменной. Используется для хранения
списков данных одного типа. Примером может быть сохранение
списка стран или списка итогов за неделю. В VBA обычная перемен-
ная может хранить только одно значение за раз. В следующем при-
мере показана переменная, используемая для хранения оценок уче-
ника:

Dim Student1 As Integer
Student1 = 55

Переменная Student может хранить только 1 значение за раз.

Если мы хотим сохранить оценки другого ученика, то нам нужно
создать вторую переменную.

Проблема с использованием одной переменной для каждого
учащегося заключается в том, что вам необходимо добавить код для
каждого учащегося. Поэтому, если в приведенном выше примере у
вас будет тысяча студентов, вам понадобится три тысячи строк кода!
К счастью, у нас есть массивы, чтобы сделать нашу жизнь проще.
Массивы позволяют нам хранить список элементов данных в одной
структуре:

Public Sub StudentMarksArr()
 With ThisWorkbook.Worksheets("Лист1")
 ' Объявите массив для хранения оценок для 5 студентов
 Dim Students(1 To 5) As Integer
 ' Читайте оценки учеников из ячеек C3: C7 в массив
 Dim i As Integer
 For i = 1 To 5
 Students(i) = .Range("C2").Offset(i)
 Next i
 ' Распечатывать оценки студентов из массива
 Debug.Print "Оценки студентов"
 For i = LBound(Students) To UBound(Students)
 Debug.Print Students(i)
 Next i
 End With
End Sub

Преимущество этого кода в том, что он будет работать для лю-
бого количества студентов. Если нам нужно изменить этот код для
работы с 1000 студентами, то нам нужно всего лишь изменить (от 1
до 5) на (от 1 до 1000) в декларации.

177

В VBA есть два типа массивов:

 статический – массив фиксированного размера;

 динамический – массив, в котором размер задается во
время выполнения.

Разница между этими массивами в основном в том, как они со-
здаются. Доступ к значениям в обоих типах массивов абсолютно оди-
наков. В следующих разделах мы рассмотрим оба типа.

Статический массив объявляется следующим образом:

Public Sub DecArrayStatic()
 ' Создать массив с местоположениями 0,1,2,3
 Dim arrMarks1(0 To 3) As Long
 ' По умолчанию от 0 до 3, то есть местоположения 0,1,2,3
 Dim arrMarks2(3) As Long
 ' Создать массив с местоположениями 1,2,3,4,5
 Dim arrMarks1(1 To 5) As Long
 ' Создать массив с местоположениями 2,3,4
 'Это редко используется
 Dim arrMarks3(2 To 4) As Long
End Sub

Как видите, размер указывается при объявлении статического
массива. Проблема в том, что вы никогда не можете быть заранее
уверены, какой размер вам нужен. Каждый раз, когда вы запускаете
макрос, у вас могут быть разные требования к размеру.

Если вы не используете все расположения массива, то ресурсы
тратятся впустую. Если вам нужно больше места, то вы можете ис-
пользовать ReDim, но это, по сути, создает новый статический мас-
сив.

Динамический массив не имеет таких проблем. Вы не указы-
ваете размер, когда объявляете. Поэтому вы можете увеличивать и
уменьшать по мере необходимости. При этом стоит помнить, измене-
ние размера массива не изменяет тип массива, который был объяв-
лен вначале (оператор Dim):

Public Sub DecArrayDynamic()
 ' Объявить динамический массив
 Dim arrMarks() As Long
 ' Установите размер массива, когда вы будете готовы
 ReDim arrMarks(0 To 5)
End Sub

178

Динамический массив не выделяется, пока вы не используете
оператор ReDim. Преимущество в том, что вы можете подождать,
пока не узнаете количество элементов, прежде чем устанавливать
размер массива. Со статическим массивом вы должны указать раз-
мер заранее.

Чтобы присвоить значения массиву, вы используете номер ме-
стоположения (пересечении строки и столбца). Вы присваиваете зна-
чение для обоих типов массивов одинаково.

Public Sub AssignValue()
 ' Объявить массив с местополо-
жениями 0,1,2,3
 Dim arrMarks(0 To 3) As Long
 ' Установите значение позиции 0
 arrMarks(0) = 5
 ' становите значение позиции 3
 arrMarks(3) = 46
 ' Это ошибка, так как нет место-
положения 4
 arrMarks(4) = 99
End Sub

Заполнение ячеек памяти значени-
ями, присваиваемыми элементам
массива:

Номер места называется индексом. Последняя строка в при-
мере выдаст ошибку «Индекс вне диапазона», так как в примере мас-
сива нет местоположения 4.

Вы можете использовать функцию Array для заполнения мас-
сива списком элементов. Вы должны объявить массив как тип Variant.
Следующий код показывает, как использовать эту функцию.

Dim arr1 As Variant
arr1 = Array("Апельсин", Персик","Груша")

Заполнение ячеек памяти значе-
ниями, присваиваемыми эле-
ментам массива:

Dim arr2 As Variant
arr2 = Array(5, 6, 7, 8, 12)

Массив, созданный функцией Array, начнется с нулевого ин-
декса, если вы не используете Option Base 1 в верхней части вашего
модуля. Затем он начнется с первого индекса. В программировании,
как правило, считается плохой практикой иметь ваши реальные дан-
ные в коде. Однако иногда это полезно, когда вам нужно быстро про-

0 1 2

АпельсинПерсик Груша

0 1 2 3 4

5 6 7 8 12

179

тестировать некоторый код. Функция Split используется для разделе-
ния строки на массив на основе разделителя. Разделитель – это сим-
вол, такой как запятая или пробел, который разделяет элементы.
Следующий код разделит строку на массив из четырех элементов,
при этом индексация элементов массива начинается с 0:

Dim s As String
s = "Красный,Желтый,Зеленый,Синий"
Dim arr() As String
arr = Split(s, ",")

Заполнение ячеек памяти значени-
ями присваиваемыми элементам
массива:

Функция Split обычно используется, когда вы читаете из cvs или
txt-файла, разделенного запятыми, или из другого источника, кото-
рый предоставляет список элементов, разделенных одним и тем же
символом.

5.8.7.1. Использование циклов с массивами (VBA)

Использование цикла For обеспечивает быстрый доступ ко всем
элементам массива. Вот где сила использования массивов стано-
вится очевидной. Мы можем читать массивы с десятью значениями
или десятью тысячами значений, используя те же несколько строк
кода. В VBA есть две функции: LBound и UBound. Эти функции воз-
вращают самый маленький и самый большой индекс в массиве. В
массиве arrMarks (от 0 до 3) LBound вернет 0, а UBound вернет 3. В
следующем примере случайные числа присваиваются массиву с по-
мощью цикла. Затем он печатает эти числа, используя второй цикл:

Public Sub ArrayLoops()
 ' Объявить массив
 Dim arrMarks(0 To 5) As Long
 ' Заполните массив случайными числами
 Dim i As Long
 For i = LBound(arrMarks) To UBound(arrMarks)
 arrMarks(i) = 5 * Rnd
 Next i
 ' Распечатайте значения в массиве
 Debug.Print "Место нахождения", "Значение"
 For i = LBound(arrMarks) To UBound(arrMarks)
 Debug.Print i, arrMarks(i)
 Next i
End Sub

Функции LBound и UBound очень полезны. Их использование

0 1 2 3

Красный Желтый Зеленый Синий

180

означает, что наши циклы будут работать правильно с любым разме-
ром массива. Реальное преимущество заключается в том, что, если
размер массива изменяется, то нам не нужно менять код для печати
значений. Цикл будет работать для массива любого размера до тех
пор, пока вы используете эти функции.

Вы можете использовать цикл For Each с массивами. Важно
помнить, что он доступен только для чтения. Это означает, что вы не
можете изменить значение в массиве. В следующем коде значение
метки изменяется, но оно не меняет значение в массиве:

For Each mark In arrMarks
 ' Не изменит значение массива
 mark = 5 * Rnd
Next mark

Цикл For Each отлично подходит для чтения массива:

Dim mark As Variant
For Each mark In arrMarks
 Debug.Print mark
Next mark

Функция Erase может использоваться для массивов, но она ра-
ботает по-разному в зависимости от типа массива. Для статического
массива функция Erase сбрасывает все значения по умолчанию.
Если массив состоит из целых чисел, то все значения устанавлива-
ются в ноль. Если массив состоит из строк, то все строки устанавли-
ваются в «» и так далее. Для динамического массива функция удале-
ния стирает память. То есть она удаляет массив. Если вы хотите ис-
пользовать его снова, то вы должны использовать ReDim для выде-
ления памяти.

Давайте рассмотрим пример статического массива. Мы исполь-
зуем Erase после установки значений. Когда значения массива будут
распечатаны, то все они будут равны нулю:

Public Sub EraseStatic()
 ' Объявить массив
 Dim arrMarks(0 To 3) As Long
 ' Заполним массив случайными числами
 Dim i As Long
 For i = LBound(arrMarks) To UBound(arrMarks)
 arrMarks(i) = 5 * Rnd
 Next i
 ' ВСЕ ЗНАЧЕНИЯ УСТАНОВЛЕНЫ НА НОЛЬ
 Erase arrMarks

181

 ' Распечатаем значения - там все теперь ноль
 Debug.Print "Место нахождения", "Значение"
 For i = LBound(arrMarks) To UBound(arrMarks)
 Debug.Print i, arrMarks(i)
 Next i
End Sub

Теперь мы попробуем тот же пример с динамикой. После того,
как мы используем Erase, все места в массиве были удалены. Нам
нужно использовать ReDim, если мы хотим использовать массив
снова. Если мы попытаемся получить доступ к членам этого массива,
то мы получим ошибку «Индекс вне диапазона»:

Public Sub EraseDynamic()
 ' Объявить массив
 Dim arrMarks() As Long
 ReDim arrMarks(0 To 3)
 ' Заполнить массив случайными числами
 Dim i As Long
 For i = LBound(arrMarks) To UBound(arrMarks)
 arrMarks(i) = 5 * Rnd
 Next i
 ' arrMarks теперь освобожден. Места не существуют.
 Erase arrMarks
End Sub

Если мы используем ReDim для существующего массива, то
массив и его содержимое будут удалены. В следующем примере вто-
рой оператор ReDim создаст совершенно новый массив. Исходный
массив и его содержимое будут удалены:

Sub UsingRedim()
 Dim arr() As String
 ' Установить массив в слоты от 0 до 2
 ReDim arr(0 To 2)
 arr(0) = "Яблоко"
 ' Массив с яблоком теперь удален
 ReDim arr(0 To 3)
End Sub

Если мы хотим расширить размер массива без потери содержи-

мого, то мы можем использовать ключевое слово Preserve. Когда мы

используем Redim Preserve, то новый массив должен начинаться с

того же начального размера. Например, мы не можем сохранить от (0

до 2) до (от 1 до 3) или до (от 2 до 10), поскольку они являются раз-

личными начальными размерами. В следующем коде мы создаем

182

массив с использованием ReDim, а затем заполняем массив типами

фруктов. Затем мы используем Preserve для увеличения размера

массива, чтобы не потерять оригинальное содержимое:

Sub UsingRedimPreserve()

Dim arr() As String

 ' Установить массив в слоты от 0 до 1

 ReDim arr(0 To 2)

 arr(0) = "Яблоко"

 arr(1) = "Апельсин"

 arr(2) = "Груша"

 ' Изменение размера и сохранение исходного содержимого

 ReDim Preserve arr(0 To 5)

End Sub

На рис. 51 приведён снимок экрана с точкой останова выполне-
ния программы для иллюстрации содержимого массива arr исход-
ными значениями, их всего три.

На рис. 52 видно, что исходное содержимое массива было со-

хранено и к исходному содержимому добавлено два новых элемента.

Рис. 51. Исходное состояние массива

183

Preserve работает только с верхней границей массива. Напри-
мер, если у вас есть двумерный массив, то вы можете сохранить
только второе измерение, как показано в следующем примере:

Sub Preserve2D()
 Dim arr() As Long
 ' Установите начальный размер
 ReDim arr(1 To 2, 1 To 5)
 ' Изменить размер верхнего измерения
 ReDim Preserve arr(1 To 2, 1 To 10)
End Sub

Если мы попытаемся использовать Preserve на нижней границе,
то мы получим ошибку «Индекс вне диапазона». В следующем коде
мы используем Preserve для первого измерения. Запуск этого кода
приведет к ошибке «Индекс вне диапазона»:

Sub Preserve2DError()
 Dim arr() As Long
 ' Установите начальный размер
 ReDim arr(1 To 2, 1 To 5)
 ' Ошибка «Вне диапазона»
 ReDim Preserve arr(1 To 5, 1 To 5)
End Sub

Рис. 52. Содержимое массива «сохранено» и изменён размер

старое

новое

184

Когда мы читаем из диапазона в массив, он автоматически со-
здает двумерный массив, даже если у нас есть только один столбец.
Применяются те же правила сохранения. Мы можем использовать
Preserve только на верхней границе, как показано в следующем при-
мере:

Sub Preserve2DRange()
 Dim arr As Variant
 ' Назначить диапазон массиву
 arr = Sheet1.Range("A1:A5").Value
 ' Preserve будет работать только на верхней границе
 ReDim Preserve arr(1 To 5, 1 To 7)
End Sub

Пример 5.41.

Дан массив, определить в нём все минимальные и максималь-
ные значения, определить количество минимальных и максимальных
значений.

Sub minmax()

 Dim a(), amin, amax, i, k, l, n

 Dim a1(), a2(), k1, l2

 n = Cells(Rows.Count, 1).End(xlUp).Row

 ReDim a(n)

 For i = 1 To n

 a(i) = Cells(i, 1)

 Next i

 Cells(23, 2) = n

 amin = a(1)

 amax = a(1)

 For i = 2 To n

 If amin > a(i) Then

 amin = a(i)

 End If

 If amax < a(i) Then

 amax = a(i)

 End If

185

 Next i

 k = 0
 l = 0

 For i = 1 To n
 If a(i) = amin Then
 k = k + 1
 End If
 If a(i) = amax Then
 l = l + 1
 End If
 Next i

 Cells(23, 3) = k
 Cells(23, 4) = l
 ReDim a1(2, k), a2(2, l)
 k1 = 0
 l2 = 0
 For i = 1 To n
 If a(i) = amin Then
 k1 = k1 + 1
 a1(1, k1) = amin
 a1(2, k1) = i
 End If
 If a(i) = amax Then
 l2 = l2 + 1
 a2(1, l2) = amax
 a2(2, l2) = i
 End If
 Next i

 For k1 = 1 To k
 Cells(a1(2, k1), 3) = a1(1, k1)
 Next k1

 For k1 = 1 To l
 Cells(a2(2, k1), 4) = a2(1, k1)
 Next k1
End Sub

186

На рис. 53 представлен экран выполнения рассматриваемой
программы.

5.8.7.2. Краткое руководство по массивам (VBA)

В табл. 22 представлена сводка сведений для корректного ис-
пользования различных массивов в программах.

Таблица 22

Справка по работе с массивами в VBA

Задача Статический массив Динамический
массив

1 2 3
Объявление Dim arr(0 To 5) As Long Dim arr() As Long

Dim arr As Variant
Установить размер Dim arr(0 To 5) As Long ReDim arr(0 To 5)As Variant

Рис. 53. Определение минимальных и максимальных значений в массиве

187

Продолжение табл. 22
1 2 3

Увеличить размер (со-
хранить существую-

щие данные)

Только динамический ReDim Preserve arr(0 To 6)

Установить значения arr(1) = 22 arr(1) = 22
Получить значения total = arr(1) total = arr(1)
Первая позиция LBound(arr) LBound(arr)

Последняя позиция Ubound(arr) Ubound(arr)
Читать все записи

(1D)
For i = LBound(arr) To

UBound(arr)
Next i

Or
For i = LBound(arr,1)

To UBound(arr,1)
Next i

For i = LBound(arr) To
UBound(arr)

Next i
Or

For i = LBound(arr,1) To
UBound(arr,1)

Next i
Читать все записи

(2D)
For i = LBound(arr,1)

To UBound(arr,1)
 For j = LBound(arr,2)

To UBound(arr,2)
 Next j
Next i

For i = LBound(arr,1) To
UBound(arr,1)

 For j = LBound(arr,2) To
UBound(arr,2)

 Next j
Next i

Читать все записи Dim item As Variant
For Each item In arr

Next item

Dim item As Variant
For Each item In arr

Next item
Перейти на Sub Sub MySub(ByRef arr()

As String)
Sub MySub(ByRef arr() As

String)
Возврат из функции Function GetArray() As

Long()
 Dim arr(0 To 5) As

Long
 GetArray = arr

End Function

Function GetArray() As Long()
 Dim arr() As Long GetArray

= arr
End Function

Получить от функции Только динамический Dim arr() As Long
Arr = GetArray()

Стереть массив Erase arr
*Сбрасывает все зна-
чения по умолчанию

Erase arr
*Удаляет массив

Строка в массив Только динамический Dim arr As Variant
arr =

Split(«James:Earl:Jones»,»:»)
Массив в строку Dim sName As String

sName = Join(arr, «:»)
Dim sName As String
sName = Join(arr, «:»)

Заполните значени-
ями

Только динамический Dim arr As Variant
arr = Array(«John», «Hazel»)

Диапазон в массиве Только динамический Dim arr As Variant
arr = Range(«A1:D2»)

Массив в диапазоне Так же, как в динами-
ческом

Dim arr As Variant
Range(«A5:D6») = arr

188

Контрольные вопросы к главе 5

1. Что такое массив?
2. Что такое регулярные (анонимные) типы?
3. Как используются собственные имена при объявлении масси-

вов?
4. Как осуществляется последовательный доступ к элементу

массива?
5. Чем отличаются различные способы сортировки массивов?
6. В чем суть алгоритма удаления элемента из массива?
7. Что такое квадратная матрица?
8. Какими соотношениями связаны расположения элементов в

матрице с диагоналями?
9. Какие существуют операции над массивами?
10. Какие существуют операции над элементами массива?
11. Какие типы массивов применяются в программировании?
12. Как можно изменить размер массива?
13. Каков механизм сохранения начальных значений массива при

изменении размеров?
14. В чём разница между удалением массива и очищением мас-

сива.
15. Каким способом можно определить размер массива?
16. Какая разница между верхней и нижней границами разнораз-

мерных массивов?
17. Сколько типов циклов применяется в программировании?
18. В чём особенности параметрического цикла?
19. В чем принципиальная разница в условных циклах?
20. Какие есть способы досрочного прерывания выполнения

цикла?

189

Глава 6. ПОЛЬЗОВАТЕЛЬСКИЕ ПРОЦЕДУРЫ И ФУНКЦИИ

В языке PascalABC.NET, как и в большинстве языков програм-
мирования, в том числе и в VBA, предусмотрены средства, позволя-
ющие оформлять вспомогательный алгоритм как подпрограмму. Это
бывает необходимо когда какой-либо алгоритм неоднократно повто-
ряется в программе или имеется возможность использовать некото-
рые фрагменты уже разработанных ранее алгоритмов. Кроме того,
подпрограммы применяются для разбиения крупных программ на от-
дельные смысловые части в соответствии с модульным принципом в
программировании.

Для использования алгоритма в качестве подпрограммы ему
необходимо присвоить имя и описать алгоритм по правилам языка
Паскаль. В дальнейшем при необходимости вызвать его в программе
делают вызов подпрограммы упоминанием в нужном месте имени со-
ответствующего алгоритма со списком входных и выходных данных.
Такое упоминание приводит к выполнению входящих в подпрограмму
операторов, работающих с указанными данными. После выполнения
подпрограммы работа продолжается с той команды, которая непо-
средственно следует за вызовом подпрограммы.

В языке Паскаль имеется два вида подпрограмм – процедуры и
функции.

Процедуры и функции помещаются в раздел описаний про-
граммы. Для обмена информацией между процедурами и функциями
и другими блоками программы существует механизм входных и вы-
ходных параметров. Входными параметрами называют величины,
передающиеся из вызывающего блока в подпрограмму (исходные
данные для подпрограммы), а выходными – передающиеся из под-
программы в вызывающий блок (результаты работы подпрограммы).

Одна и та же подпрограмма может вызываться неоднократно,
выполняя одни и те же действия с разными наборами входных дан-
ных. Параметры, использующиеся при записи текста подпрограммы
в разделе описаний, называют формальными, а те, что используются
при ее вызове – фактическими [5].

190

6.1. Описание и вызов процедур и функций

 (ࢀࡱࡺ.࡯࡮࡭࢒ࢇࢉ࢙ࢇࡼ)

Структура описания процедур и функций до некоторой степени
похожа на структуру Паскаль-программы: у них также имеются заго-
ловок, раздел описаний и исполняемая часть. Раздел описаний со-
держит те же подразделы, что и раздел описаний программы: описа-
ния констант, типов, меток, процедур, функций, переменных. Испол-
няемая часть содержит собственно операторы процедур.

Формат описания процедуры имеет вид:

procedure имя процедуры (формальные параметры);
 раздел описаний процедуры
begin
 исполняемая часть процедуры
end;

Формат описания функции:

function имя функции (формальные параметры):тип результата;
 раздел описаний функции
begin

 исполняемая часть функции

end;

Формальные параметры в заголовке процедур и функций запи-
сываются в виде:

var имя праметра: имя типа

и отделяются друг от друга точкой с запятой. Ключевое слово var мо-
жет отсутствовать (об этом далее). Если параметры однотипны, то их
имена можно перечислять через запятую, указывая общее для них
имя типа. При описании параметров можно использовать только
стандартные имена типов либо имена типов, определенные с помо-
щью команды type. Список формальных параметров может отсут-
ствовать.

Вызов процедуры производится оператором, имеющим следу-
ющий формат:

имя процедуры(список фактических параметров);

191

Список фактических параметров – это их перечисление че-
рез запятую. При вызове фактические параметры как бы подставля-
ются вместо формальных, стоящих на тех же местах в заголовке. Та-
ким образом происходит передача входных параметров, затем вы-
полняются операторы исполняемой части процедуры, после чего
происходит возврат в вызывающий блок. Передача выходных пара-
метров происходит непосредственно во время работы исполняемой
части.

Вызов функции в PascalABC.NET может производиться анало-
гичным способом. Кроме того, имеется возможность осуществить вы-
зов внутри какого-либо выражения. В частности имя функции может
стоять в правой части оператора присваивания, в разделе условий
оператора if и т.д.

Для передачи в вызывающий блок выходного значения функции
в исполняемой части функции перед возвратом в вызывающий блок
необходимо поместить следующую команду:

имя функции := результат;

При вызове процедур и функций необходимо соблюдать следу-
ющие правила:

 количество фактических параметров должно совпадать с ко-
личеством формальных;

 соответствующие фактические и формальные параметры
должны совпадать по порядку следования и по типу.

Заметим, что имена формальных и фактических параметров
могут совпадать. Это не приводит к проблемам, так как соответству-
ющие им переменные все равно будут различны из-за того, что хра-
нятся в разных областях памяти. Кроме того, все формальные пара-
метры являются временными переменными – они создаются в мо-
мент вызова подпрограммы и уничтожаются в момент выхода из нее.

Пример 6.1.

Рассмотрим использование процедуры на примере программы
поиска максимума из двух целых чисел (рис. 54).

var
 x, y, m, n: integer;

192

procedure MaxNumber(a, b: integer; var max: integer);
begin
 if a > b then max := a else max := b;
end;

begin
 write('Введите x,y ');
 readln(x, y);
 MaxNumber(x, y, m);
 writeln('x = ', x, '; y = ', y, '; m = ', m);
 MaxNumber(2, x + y, n);
 writeln('x + y = ', x + y, '; n = ', n);
end.

Аналогичную задачу, но уже с использованием функций, можно
решить так (рис. 55):

var
 x, y, m, n: integer;

function MaxNumber(a, b: integer): integer;
var
 max: integer;
begin
 if a > b then max := a else max := b;
 MaxNumber := max;
end;

begin

Рис. 54. Пример использования Procedure

193

 write('Введите x,y ');
 readln(x, y);
 m := MaxNumber(x, y);
 writeln('x = ', x, '; y = ', y, '; m = ', m);
 n := MaxNumber(2, x + y);
 writeln('x+y = ', x+y, '; n = ', n);
end.

В PascalABC.NET допускаются короткие определения для функ-
ций, задаваемых одним выражением. Тип возвращаемого значения
можно не указывать – он выводится автоматически. Допускаются ко-
роткие определения процедур, задаваемых одним оператором:

function Куб(x: integer) := x*x*x;
function ПлощадьКруга(r: real) := Pi*r*r;
function Hypot(a,b: real) := Sqrt(a*a+b*b);
procedure DrawP(x,y: real) := Circle(x,y,3);

Переменной можно присвоить действие. Такая переменная
называется процедурной. Она хранит отложенное действие. Это
действие можно вызвать, указав процедурную переменную вместо
имени процедуры или функции. Действие можно передать в подпро-
грамму как параметр. Вызов этого действия в этой подпрограмме
называется обратным вызовом (callback):

procedure Корова := Println('Му-у');

Рис. 55. Пример использования Function

194

procedure Собака := Println('Гав!');
procedure Кошка := Println('Мяу!');
begin
 var Звук: procedure := Корова;
 Звук;
 Звук := Собака;
 Звук;
 Звук := Кошка;
 Звук;
end.

Процедурной переменной можно присвоить функцию. Как и про-
цедуру, функцию можно вызвать через процедурную переменную и
передать её как параметр в подпрограмму.

Пример 6.2.

Вызов функции через процедурную переменную.

begin
 var a : real -> real := sin;
 Print(a(0));
 a := cos;
 Print(a(0));
end.

Пример 6.3.

Передача функции как параметра (рис. 56).

uses GraphABC;

begin
 Draw(cos);
end.

Рис. 56. Передача функции как параметра

195

6.2. Процедуры и функции. Виды процедур (࡭࡮ࢂ)

Пользовательская функция – это процедура VBA, которая про-
изводит заданные вычисления и возвращает полученный результат.
Используется для вставки в ячейки рабочего листа Excel или для вы-
зова из других процедур.

6.2.1. Синтаксис функции

[Static] Function Имя ([СписокАргументов])[As ТипДанных]
 [Операторы]
 [Имя = выражение]
 [Exit Function]
 [Операторы]
 [Имя = выражение]
End Function

6.2.2. Компоненты функции

 Static – необязательное ключевое слово, указывающее на то,
что значения переменных, объявленных в функции, сохраня-
ются между ее вызовами.

 Имя – обязательный компонент, имя пользовательской функ-
ции.

 СписокАргументов – необязательный компонент, одна или
более переменных, представляющих аргументы, которые пе-
редаются в функцию. Аргументы заключаются в скобки и раз-
деляются между собой запятыми.

 Операторы – необязательный компонент, блок операторов
(инструкций).

 Имя = выражение – необязательный11 компонент, присвое-
ние имени функции значения выражения или переменной.
Обычно значение присваивается функции непосредственно
перед выходом из нее.

 Exit Function – необязательный компонент, принудительный
выход из функции, если ей уже присвоено окончательное зна-
чение.

11 Один из компонентов Имя = выражение следует считать обязательным, так как если не

присвоить функции значение, то смысл ее использования теряется.

196

6.2.3. Видимость функции

Видимость пользовательской функции определяется необяза-
тельными ключевыми словами Public и Private, которые могут быть
указаны перед оператором Function (или Static, в случае его исполь-
зования).

Ключевое слово Public указывает на то, что функция будет до-
ступна для вызова из других процедур во всех модулях открытых книг
Excel. Функция, объявленная как Public, отображается в диалоговом
окне Мастера функций.

Ключевое слово Private указывает на то, что функция будет до-
ступна для вызова из других процедур только в пределах программ-
ного модуля, в котором она находится. Функция, объявленная как
Private, не отображается в диалоговом окне Мастера функций, но ее
можно ввести в ячейку вручную.

Если ключевое слово Public или Private не указано, то функция
считается по умолчанию объявленной, как Public.

Чтобы пользовательская функция всегда была доступна во всех
открытых книгах Excel, сохраните ее в Личной книге макросов без
объявления видимости или как Public. Но если вы планируете пере-
дать рабочую книгу с пользовательской функцией на другой компью-
тер, то код функции должен быть в программном модуле передавае-
мой книги.

Пример 6.4.

Для примера мы рассмотрим простейшую пользовательскую
функцию, которой в следующем параграфе добавим описание. Назы-
вается функция «Деление», объявлена с типом данных Variant, так
как ее возвращаемое значение может быть и числом, и текстом. Ар-
гументы функции – Делимое и Делитель – тоже объявлены как
Variant, так как в ячейках Excel могут быть числовые значения разных
типов, и функция IsNumeric тоже проверяет разные типы данных и
требует, чтобы ее аргументы были объявлены как Variant:

Function Деление(Делимое As Variant, Делитель As Variant) As Variant
 If IsNumeric(Делимое) = False Or IsNumeric(Делитель) = False Then
 Деление = "Ошибка: Делимое и Делитель должны быть числами!"

197

 Exit Function
 ElseIf Делитель = 0 Then
 Деление = "Ошибка: деление на ноль!"
 Exit Function
 Else
 Деление = Делимое / Делитель
 End If
End Function

Эта функция выполняет деление значений двух ячеек рабочего
листа Excel. Перед делением проверяются два блока условий:

 Если делимое или делитель не являются числом, то функция
возвращает значение: «Ошибка: Делимое и Делитель
должны быть числами!» и производится принудительный вы-
ход из функции оператором Exit Function.

 Если делитель равен нулю, то функция возвращает значение:
«Ошибка: деление на ноль!» и производится принудительный
выход из функции оператором Exit Function.

 Если проверяемые условия не выполняются (возвращают
значение False), то производится деление чисел и функция
возвращает частное (результат деления).

Вы можете скопировать к себе в стандартный модуль эту функ-
цию и она станет доступна в разделе «Определенные пользовате-
лем» в диалоговом окне Мастера функций. Попробуйте вставить
функцию «Деление» в ячейку рабочего листа с помощью Мастера
функций и поэкспериментируйте с ней.

Практического смысла функция «Деление» не имеет, но она хо-
рошо демонстрирует как объявляются, создаются и работают поль-
зовательские функции в VBA Excel. А еще она поможет продемон-
стрировать, как добавлять к функциям и аргументам описания. С пол-
ноценной пользовательской функцией вы можете ознакомиться
здесь.

6.2.4. Добавление описания функции

В списке функций, выводимом Мастером, невозможно добавить
или отредактировать их описание. Список макросов позволяет добав-

198

лять процедурам описание, но в нем нет функций. Проблема реша-
ется следующим образом:

 Запустите Мастер функций, посмотрите, как отображается
имя нужной функции и закройте его.

 Откройте список макросов и в поле «Имя макроса» впишите
имя пользовательской функции.

 Нажмите кнопку «Параметры» и в открывшемся окне до-
бавьте или отредактируйте описание.

 Нажмите кнопку «OK», затем в окне списка макросов – «От-
мена». Описание готово!

Добавление описания на примере функции «Деление» (рис. 57):

Описание функции «Деление» в диалоговом окне Мастера
функций «Аргументы функции» (рис. 58):

Рис. 57. Добавление описания пользовательской функции

Рис. 58. Описание пользовательской функции в окне
«Аргументы функции»

199

С помощью окна «Список макросов» можно добавить описание
самой функции, а ее аргументам нельзя. Но это можно сделать, ис-
пользуя метод Application.MacroOptions.

6.2.5. Метод ࢙࢔࢕࢏࢚࢖ࡻ࢕࢘ࢉࢇࡹ.࢔࢕࢏࢚ࢇࢉ࢏࢒࢖࢖࡭

Метод Application.MacroOptions позволяет добавить пользова-
тельской функции описание, назначить сочетание клавиш, указать
категорию, добавить описания аргументов и добавить или изменить
другие параметры. Давайте рассмотрим возможности этого метода,
используемые чаще всего.

Пример 6.5

Пример кода с методом Application.MacroOptions:

Sub ИмяПодпрограммы()
 Application.MacroOptions _
 Macro:="ИмяФункции", _
 Description:="Описание функции", _
 Category:="Название категории", _
 ArgumentDescriptions:=Array("Описание 1", "Описание 2",
 "Описание 3", ...)
End Sub

 ИмяПодпрограммы – любое уникальное имя, подходящее
для наименования процедур.

 ИмяФункции – имя функции, параметры которой добавля-
ются или изменяются.

 Описание функции – описание функции, которое добавля-
ется или изменяется.

 Название категории – название категории, в которую будет
помещена функция. Если параметр Category отсутствует, то
пользовательская функция будет записана в раздел по умол-
чанию – «Определенные пользователем». Если указанное
Название категории соответствует одному из названий стан-
дартного списка, то функция будет записана в него. Если та-
кого Названия категории нет в списке, то будет создан новый
раздел с этим названием и функция будет помещена в него.

200

 “Описание 1”, “Описание 2”, “Описание 3”, … – описания
аргументов в том порядке, как они расположены в объявле-
нии пользовательской функции.

Эта подпрограмма запускается один раз, после чего ее можно
удалить или использовать как шаблон для корректировки параметров
других пользовательских функций.

Сейчас с помощью метода Application.MacroOptions попробуем
изменить описание пользовательской функции «Деление» и доба-
вить описания аргументов.

Sub ИзменениеОписания()
 Application.MacroOptions _
 Macro:="Деление", _
 Description:="Описание функции Деление изменено методом
 Application.MacroOptions", _
 ArgumentDescriptions:=Array("- любое числовое значение", "- число
 вое значение, кроме нуля")
End Sub

После однократного запуска этой подпрограммы получаем сле-
дующий результат (рис. 59):

Метод Application.MacroOptions не работает в Личной книге мак-
росов, но и здесь можно найти решение. Добавьте описания к поль-
зовательским функциям и их аргументам в обычной книге Excel, за-
тем экспортируйте модуль с функциями в любой каталог на жестком
диске и оттуда импортируйте в Личную книгу макросов. Все описания
сохранятся.

Рис. 59. Новое описание пользовательской функции и её
второго аргумента

201

Контрольные вопросы к главе 6

1. Где пишутся листинги (коды) процедур?
2. Какова структура листинга процедуры?
3. Что записывается в заголовок процедуры после служебного

слова Sub?
4. Каким оператором осуществляется присвоение значения пе-

ременной в Visual Basic?
5. Каким оператором в Visual Basic организуется ввод данных?

Вывод данных?
6. Какова структура оператора ветвления если / то / иначе в

Visual Basic?
7. Как организуются циклы с параметром?
8. Как осуществляется обращение к процедуре из другой проце-

дуры?
9. Как описываются переменные в Visual Basic? Для чего это

необходимо?
10. Где пишутся листинги функций, определяемых пользовате-

лем?
11. Какова структура листинга (кода) функции, определяемой

пользователем?
12. Что вписывается в заглавную строку листинга пользователь-

ской функции после служебного слова Function?
13. Как осуществляется присвоение значения функции в VBA?
14. Каковы значения, вычисляемые встроенными функциями

VBA? Каков смысл аргументов этих функций?
15. В чем различие функций Excel, функций, определенных поль-

зователем, и встроенных функций VBA? Где могут приме-
няться функции перечисленных видов (рабочий лист, про-
граммный код)?

202

Глава 7. СРАВНИТЕЛЬНЫЙ СИНТАКСИС ЯЗЫКОВ
ПРОГРАММИРОВАНИЯ (СООТВЕТСТВИЕ)

Сокращения в табл.23:

вещ – вещественное,

гран – граница,

знач – значение,

кол_элем – количество элементов,

конст – константа,

масс – массив,

нов_имя – новое имя,

объяв – объявление,

операт – оператор,

перем – переменная,

подкл_библиот – подключаемые библиотеки,

прогр – программа,

сущ_тип – существующий тип,

функц – функция.

203

Таблица 23

Сравнительный синтаксис языков программирования

Операция Паскаль
Алгоритми-

ческий
Бейсик Си

Комментарий

{текст}
(*текст*)

|строка текста 'строка текста
REM строка тек-
ста

//строка тек-
ста
/*текст*/

Структура программы

заголовок
объяв конст
объяв типов
объяв пе-
рем
описание
функц
begin
 тело прогр
end.

алг
нач
 объяв перем
 тело прогр
кон
описание
функц

объяв функ
тело прогр
END
описание функц

подкл_биб-
лиот
объяв конст
объяв типов
объяв функц
void main(){
 тело прогр
}
описание
функц

Объявление переменных различных типов данных

Целое (2 байта) перем:
integer;

цел перем DIM перем AS
INTEGER

int перем;

Целое (4 байта) пе-
рем:longint;

цел перем DIM перем AS
LONG

long перем;

вещ (4 байта) пе-
рем:single;

вещ перем DIM перем AS
SINGLE

float перем;

вещ (6 байт) перем:real;

вещ (8 байт) перем:
double;

//-// DIM перем AS
DOUBLE

double перем;

символ перем: char; сим перем DIM перем AS
STRING

char перем;

строка перем:
string;

лит перем //-// -

логическое перем:
boolean;

лог перем - -

204

Продолжение табл. 23

массив целых масс: ar-
ray[гран..гра
н] of
integer ;

целтаб
масс[гран:гран
]

DIM масс() AS
INTEGER

int
масс[кол_эле
м];

массив симво-
лов

масс: ar-
ray[гран..гра
н] of
char;

симтаб
масс[гран:гран
]

DIM масс() AS
STRING

char
масс[кол_эле
м+1];

массив строк масс: ar-
ray[гран..гра
н] of
string;

литтаб
масс[гран:гран
]

//-// -

объявление
константы

сonst
имя_конст=
знач;

- CONST
имя_конст=знач

#define
имя_конст
знач

интервал пе-
рем:гран..гр
ан

- - -

создание но-
вого типа дан-
ных

type
имя_типа=о
пис_типа;

 typedef
сущ_тип
нов_имя

Арифметические операции

сложение + + + +

вычитание - - - -

умножение * * * *

возведение в
степень

exp(сте-
пень*ln(ос-
нование))

** ^ exp(сте-
пень*ln(осно-
вание))
pow(основа-
ние,степень)

деление / / / /

целочисленное
деление

div div(дели-
мое,делитель)

\ целое/целое

определение
остатка от деле-
ния

mod mod(дели-
мое,делитель)

MOD %

инкрементация
(увеличение на
1)

- - - ++

205

Продолжение табл. 23

декрементация
(уменьшение на
1)

- - - --

Операция присваивания

:= := = =

Операция взятия адреса

@перем &перем

Операции сравнения

равно = = = ==

не равно <> <> <> !=

больше > > > >

меньше < < < <

больше или
равно

>= >= >= >=

меньше или
равно

<= <= <= <=

Логические операции

не not не NOT !

и and и AND &&

или or или OR ||

Преобразование типов данных

целое в символ
(символ по
коду)

chr (целое) символ(целое) CHR$(целое) (char)целое

целое (от 0 до
9) в символ де-
сятичной
цифры

if(це-
лое>=0)and
(целое<=9)
 символ:=
 ord(сим-
вол)+ord('0')
;

if(целое>=0)и
(целое<=9)
 символ:=
 код(сим-
вол)+код('0')

if(це-
лое>=0)AND
(целое<=9)
 символ=
 ASC(сим-
вол)+ASC("0")

if((це-
лое>=0)&&
(целое<=9))
 символ=це-
лое+'0';

код символа ord(символ) код(символ) ASC(символ) (int)символ

206

Продолжение табл. 23

символ в деся-
тичную цифру

if(сим-
вол>='0'and
символ<='9')
 целое:=
 ord(сим-
вол)-ord('0');

if(символ>='0'
и
символ<='9')
 целое:=
 код(символ)-
код('0')

if(сим-
вол>='0'AND
символ<='9')
 целое=
 ASC(символ)-
ASC("0")

if((сим-
вол>='0')&&
(сим-
вол<='9'))
 целое=сим-
вол-'0';

целое в строку str(целое,
строка);

цел_в_лит(це-
лое)

STR$(целое) //подключаем
stdlib.h
itoa(це-
лое,строка);

вещ в строку str(вещ:
кол_знак:
кол_знак_по
сле_зап,
 строка);

вещ_в_лит(ве
щ)

STR$(вещ) //подключаем
stdlib.h
ftoa(вещ,стро
ка);

строка в целое val(строка,ц
елое,

код_ошиб);

лит_в_цел(стр
ока,успех)

VAL(строка) //подключаем
stdlib.h
atoi (строка)

строка в вещ //-// лит_в_вещ(стр
ока,успех)

//-// //подключаем
stdlib.h
atof (строка);

Функция проверки, является ли символ десятичной цифрой

isdigit(сим-
вол)

- - //подключаем
ctype.h
isdigit(сим-
вол)

207

Продолжение табл. 23

Ввод и вывод

ввод перем (че-
рез пробел)

read(пе-
рем,перем);

 ввод пе-
рем,перем

- //подключаем
stdio.h
//ввод целого
scanf("%d",&п
ерем);
//ввод вещ
scanf("%f",&п
ерем);
//ввод сим-
вола
scanf("%c",&п
ерем);
//ввод строки
//(без пробе-
лов)
scanf("%s",&с
трока);
//ввод строки
//(с пробе-
лами)
gets(строка);

ввод перем (че-
рез Enter)

readln(пе-
рем,перем);

 ввод перем
 ввод перем

INPUT перем
INPUT перем

//подключаем
stdio.h
scanf("%тип",
&перем);
scanf("%тип",
&перем);

ожидание про-
граммой нажа-
тия любой кла-
виши

readln //подключаем
conio.h
getch();

вывод с перево-
дом строки

writeln(пе-
рем,перем);

вывод нс, пе-
рем,перем

PRINT перем //подключаем
stdio.h
printf("%тип\n
",перем);

вывод без пере-
вода строки

write(пе-
рем,перем);

вывод пе-
рем,перем

PRINT перем; //подключаем
stdio.h
printf("%тип%
тип",перем,
перем);

вывод пустой
строки

write(char(13
)+char(10));

вывод нс PRINT //подключаем
stdio.h
printf("\n");

208

Продолжение табл. 23

Работа со строками

сравнение
строк

=,<>,>,< =,<> =,<> //подключаем
string.h
strcmp(строка
,строка)

копирование
одной строки на
место другой

строка1:=ст
рока2;

строка1:=строк
а2

строка1=строка
2

//подключаем
string.h
strcpy(строка
1,строка2)

копирование ча-
сти строки на
место другой

- - - //подключаем
string.h
strncpy(строк
а1, строка2,
позиция)

взятие символа
из строки

строка[поз_
сим]

строка[поз_си
м]

MID$(строка,
нач, длина)

строка[поз_с
им]

выбор под-
строки

copy(строка,
позиция,

кол_сим)

строка[поз_си
м:поз_сим]

//-// -

слияние строк строка1+стр
ока2
concat(строк
а,строка)

строка1+строк
а2

строка1+строка
2

//подключаем
string.h
strcat(строка,
строка)

удаление из
строки под-
строки

delete(строк
а, позиция,

кол_симв)

- - -

добавление
подстроки в
строку

insert(под-
строка,
строка,
 пози-
ция)

- - //подключаем
string.h
strncpy(строк
а1, строка2,
позиция)

длина строки length(строк
а)

длин(строка) LEN(строка) //подключаем
string.h
strlen(строка)

209

Продолжение табл. 23

Операторы ветвления

если if условие
then
begin
 опера-
торы;
end
else
begin
 опера-
торы;
end

если условие
 то
 операторы
 иначе
 операторы
все

IF условие
THEN
 операторы
ELSE
 операторы
END IF

if(условие){
 операторы;
}
else{
 операторы;
}

Выбор case перем
of
 конст :
оператор;
 else опера-
тор;
end;

выбор
 при условие:
оператор
 при условие:
оператор
 иначе опера-
тор
все

SELECT CASE
перем
 CASE
пер_выб:операт
 CASE
пер_выб:операт
 ...
 CASE ELSE
операт
END SELECT

switch(пе-
рем){
 case
конст:опер;
 break;
 case
конст:опер;
 break;
 default : опе-
ратор;
}

Операторы цикла

цикл "для" for to
(downto) do
begin
 тело цикла
end;

нц для от до
шаг
 тело цикла
кц

FOR
 тело цикла
NEXT

for(){
 тело цикла
}

цикл "пока" while усло-
вие do
begin
 тело цикла
end;

нц пока усло-
вие
 тело цикла
кц

WHILE условие
 тело цикла
WEND

while(усло-
вие){
 тело цикла
}

цикл "до тех
пор"

repeat
 тело цикла
until(усло-
вие)

нц
 тело цикла
кц при условие

DO WHILE
условие
 тело цикла
LOOP

do{
 тело цикла
}while(усло-
вие);

210

Окончание табл. 23

Описание и объявление функции

определение Function
имя_функц
(имена_ар-
гумен-
тов:тип):
тип;
begin
 тело функц
end;

алг тип
имя_функц
(тип
имена_аргу-
ментов)
нач
 тело функц
кон

FUNCTION
имя_функц
(имена_аргу-
ментов)
 тело функц
END FUNCTION

тип
имя_функц
(тип
имена_аргу-
ментов)
{
 тело функц
}

объявление - - DECLARE
FUNCTION
имя_функ(аргу-
мент)

тип
имя_функц
(тип)

211

СПИСОК ЛИТЕРАТУРЫ

1. Саакян, И.Э. Программирование в Turbo Pascal 7.0: учеб.
пособие/ И.Э.Саакян, Л.Ф. Макаренко. – М.: МАДИ, 2009. – 504 с.

2. Саакян, И.Э. Информатика. Часть 1. Введение в информатику:
учеб. пособие/ И.Э. Саакян, А.Б. Николаев. – М.: МАДИ, 2013. –
185 с.

3. Саакян, И.Э. Информатика. Часть 2. Алгоритмизация: учеб.
пособие/ И.Э. Саакян, А.Б. Николаев. – М.: МАДИ, 2015. – 138 с.

4. Словари и энциклопедии на Академике: [сайт]. [© Академик,
2000-2014]. URL: http://dic.academic.ru/dic.nsf/ruwiki/4896 (дата
обращения: 21.август.2015).

5. Процедуры и функции [Электронный ресурс] // Волгоградский
государственный педагогический университет. Кафедра
алгебры, геометрии и информатики: [сайт]. URL:
http://mif.vspu.ru/books/pascal/ procedure.html (дата обращения:
31.05.2020).

6. Бесплатные уроки по MS Excel и MS Word от Антона Андронова
[Электронный ресурс] // Microsoft Excel для начинающих: [сайт].
[2020]. URL: https://office-guru.ru/excel/peremennye-i-konstanty-v-
vba-459.html (дата обращения: 31.03.2020).

7. Все про массивы в VBA [Электронный ресурс] // EcxelPedia.ru
Отборные статьи по MS Excel 2010/13/16: [сайт]. [2020]. URL:
https:// excelpedia.ru/makrosi-v-excel/massivi-v-vba (дата
обращения: 06.05.2020).

Учебное издание

СААКЯН Игорь Эдуардович

ЕВСТРАТОВА Ирина Александровна

ИНФОРМАТИКА

Часть 3. Основы программирования

Редактор И.А. Короткова

Редакционно-издательский отдел МАДИ. E-mail: rio@madi.ru

Подписано в печать 16.03.2022 г. Формат 60×84/16.

Усл. печ. л. 13,25. Тираж 500 экз. Заказ . Цена 1070 руб.

МАДИ, 125319, Москва, Ленинградский пр-т, 64.

