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ВВЕДЕНИЕ

Настоящее учебное пособие представляет собой коллектив-
ный труд преподавателей кафедры математики и информатики 
в начальной школе факультета начального образования Инсти-
тута детства ФГБОУ ВО «Московский педагогический государ-
ственный университет» (МПГУ), созданный на основе много-
летнего опыта работы авторов по подготовке будущих учителей 
начальных классов в предметной области «Математика и инфор-
матика», которая в настоящее время осуществляется по образова-
тельным программам по направлению 44.03.01 Педагогическое 
образование (профиль «Начальное образование») и направле-
ниям 44.03.05 Педагогическое образование (с двумя профилями 
подготовки) при условии, что первым профилем является про-
филь «Начальное образование».

Вторая часть пособия состоит из десяти глав, которые дополня-
ют содержание первой части настоящего пособия, делая его завер-
шенным и полностью отвечающим современным задач профессио-
нальной подготовки будущих учителей начальных классов в той 
предметной области, которая и значится в качестве названия этой 
учебной книги.

Глава 1 «Количественная теория целых неотрицательных чи-
сел» (авторы – А.А. Локшин, Е.А. Иванова, А.С. Добротворский) 
посвящена рассмотрению центрального вопроса всего изучаемо-
го курса – построению системы целых неотрицательных чисел 
на основе теоретико-множественного подхода. Важность этой те-
ории определяется тем, что она лежит в основе арифметической 
содержательной линии практически всех действующих программ 
начального курса математики (исключение составляют лишь про-
граммы, базирующиеся на идеях Д.Б. Эльконина – В.В. Давыдова).

Глава 2 «Десятичная система счисления и арифметические ал-
горитмы с точки зрения теории множеств» (авторы – А.А. Локшин, 
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Е.А. Иванова) интересна тем, что впервые в учебных пособиях 
данного направления обосновано устройство десятичной системы 
счисления и хорошо знакомых алгоритмов арифметических дейст-
вий на основе количественной теории.

В главе 3 «Системы счисления» (автор – А.Л. Чекин) рассмат-
риваются общие вопросы возникновения и развития различных 
систем нумерации чисел, дается сравнительный анализ позици-
онных и непозиционных систем счисления, подробно рассматри-
ваются недесятичные позиционные системы счисления, что ока-
зывает важное положительное влияние на понимание основных 
принципов устройства общепринятой десятичной системы.

Глава 4 «Делимость целых неотрицательных чисел» (автор – 
А.Л. Чекин) посвящена рассмотрению основных вопросов теории 
делимости целых неотрицательных чисел, знание которых позво-
лит будущему учителю начальных классов с пониманием ориенти-
роваться в арифметической составляющей начального курса мате-
матики, включая основную теорему арифметики.

В главе 5 «Положительные рациональные числа как операто-
ры» (автор – А.А. Локшин) изложен операторный подход к постро-
ению системы положительных рациональных чисел в авторском 
изложении.

В главе 6 «Целые числа как операторы» (авторы – А.А. Локшин, 
Е.А. Иванова, Н.Н. Лаврова) продолжена реализация операторного 
подхода, но уже к построению системы целых чисел. Это позволя-
ет дать более понятное обоснование правилам выполнения ариф-
метических действий на множестве целых чисел.

Глава 7 «Выражения. Уравнения. Неравенства» (автор – 
Н.Н. Лаврова) посвящена рассмотрению алгебраических вопро-
сов, которые в той или иной степени проецируются на начальный 
курс математики.

В главе 8 «Геометрические преобразования плоскости» (ав-
тор – В.В. Тимошенко) изложены программные вопросы геоме-
трического характера на основе понятия геометрического преоб-
разования плоскости. Материал данной главы дает представление 
о том, как принято выстраивать изложение материала в учебниках 
для математических специальностей.
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В главе 9 «Величины» (авторы – А.А. Локшин, О.В. Бахтина) 
рассмотрены вопросы теории положительных скалярных величин. 
При этом набор изучаемых величин определяется принадлежно-
стью той или иной величины к программному содержанию началь-
ного курса математики.

Глава 10 «Информационные модели на графах» (автор – 
Л.Л. Босова) является заключительной. В ней изложены основные 
вопросы теории графов, которые имеют прямое отношение к зада-
чам в области информатики, в частности к построению информа-
ционных моделей.

Каждая глава завершается достаточно обширным перечнем за-
дач по соответствующей проблематике, а также списком рекомен-
дуемой литературы. Задачи целесообразно использовать на пра-
ктических занятиях в процессе работы по данному учебному 
пособию.

А.Л. Чекин
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ГЛАВА 1.
КОЛИЧЕСТВЕННАЯ ТЕОРИЯ ЦЕЛЫХ 

НЕОТРИЦАТЕЛЬНЫХ ЧИСЕЛ

Книга [1] вплоть до недавнего времени была одним из немногих 
пособий по математике для будущих учителей начальных классов, 
где подробно излагалась количественная теория целых неотрица-
тельных чисел (базирующаяся на элементарной теории множеств). 
Это учебное пособие, изданное в 1998 году, стало в настоящее вре-
мя библиографической редкостью.

В других существующих математических пособиях, ориенти-
рованных на ту же читательскую аудиторию, обычно подробно 
излагается не количественная, а порядковая теория целых неотри-
цательных чисел (базирующаяся на аксиоматике Пеано), а количе-
ственной теории уделяется значительно меньше внимания.

В чем же причина столь явного превалирования теории Пеа-
но над количественной теорией? Все дело в том, что, не выхо-
дя за пределы «наивного» теоретико-множественного подхода, 
не удается строго обосновать некоторые математические факты, 
прежде всего, доказать теорему о конечности объединения двух 
конечных множеств. Именно преимуществом в строгости изложе-
ния и объясняется упомянутая выше сложившаяся ситуация.

Парадокс, однако, заключается в том, что у учителей начальных 
классов существует объективная потребность именно в количест-
венной теории. Дело в том, что, объясняя ребенку смысл понятия 
натурального числа, учитель неизбежно обращается к врожденно-
му «чувству количества», проявляющемуся даже у детей шести-
месячного возраста. И если младшему школьнику можно при этом 
обойтись без понятия «множество», то учителю необходима тео-
ретико-множественная база, опираясь на которую он будет давать 
уверенные объяснения и ответы на вопросы учеников.
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Упомянутый выше парадокс проявляется особенно ярко 
при знакомстве со свойствами арифметических операций, в част-
ности коммутативностью и ассоциативностью сложения. В ко-
личественной теории эти свойства в буквальном смысле слова 
очевидны (фактически следуют из коммутативности и ассоциатив-
ности логических союзов «и», «или»); в аксиоматической (поряд-
ковой) теории Пеано доказательства этих свойств сложения зани-
мают не меньше, чем полстраницы каждое. Нет никакого сомнения 
в том, что внутреннюю опору при рассказе ученикам о свойствах 
сложения учитель будет искать именно в количественной теории, 
а не в порядковой.

Преодоление возникшего парадокса, предложенное в [1], за-
ключается в том, что будущий учитель начальных классов не нуж-
дается в курсе математики в тотальной математической строгости 
доказательств, но, несомненно, нуждается в ясности и обоснован-
ности выводов «на уровне здравого смысла».

В этой главе представлено сокращенное и переработанное из-
ложение подхода, развитого в [1]. Мы старались избегать длин-
ных доказательств, по возможности заменяя их перечислением 
наиболее существенных «опорных» соображений. По сравнению 
с [1] видоизменен подход к понятию «конечное множество»; кро-
ме того, по-другому представлена тема «Деление», предложен ряд 
новых задач.

1.1. КОНЕЧНЫЕ МНОЖЕСТВА

Количественная теория целых неотрицательных чисел (ц.н.ч.), 
которую мы собираемся построить, базируется на понятии конеч-
ного множества.

Определение 1.1. («Физический» уровень строгости; см. [1]). 
Будем по очереди ставить мысленные метки на элементы некото-
рого непустого множества A и будем делать это с постоянной ско-
ростью. Если к некоторому моменту времени обнаружится, что все 
элементы множества A снабжены нашими мысленными метка-
ми, то такое множество назовем конечным. Пустое множество  
по определению считается конечным.
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Замечание. С математической точки зрения дефект определе-
ния 1.1 в том, что используются понятия «время» и «скорость», 
для общепринятого введения которых уже необходимо распола-
гать понятием числа. (А мы еще только собрались строить систему 
целых неотрицательных чисел.)

Можно, впрочем, в определении 1.1 обойтись интуитивным по-
нятием времени и считать, что:
а) наблюдатель (который подразумевается в определении 1.1) пе-

реворачивает песочные часы каждый раз после того, как по-
ставит мысленную метку на какой-нибудь элемент множест-
ва A;

б) в течение интервала времени, отмеряемого песочными часа-
ми, наблюдатель обязательно ставит мысленную метку на ка-
кой-нибудь не отмеченный ранее элемент множества A.
Тогда вышеупомянутые претензии к определению 1.1, очевид-

но, отпадут. (Тем не менее использование интуитивного понятия 
времени представляется с точки зрения чистой математики нару-
шением строгости изложения.)

Теорема 1.1. Пусть A – непустое конечное множество. Тогда 
A не равномощно никакому своему подмножеству B, отличному 
от A.

Доказательство. Пусть некоторое множество A конечно в смы-
сле определения 1.1. Очевидно, что время, затрачиваемое наблю-
дателем для расстановки меток на элементах множества A, не за-
висит от порядка, к котором расставляются метки. Отсюда сразу 
следует справедливость утверждения теоремы.

Замечание. Известный математик Р. Дедекинд (1831–1916), 
один из создателей теории вещественных чисел, предложил следу-
ющее определение непустого конечного множества.

Определение непустого конечного множества по Р. Деде-
кинду. Непустое множество A конечно, если оно не равномощно 
никакому своему подмножеству, не совпадающему с A.

Таким образом, проведенное выше на физическом уровне стро-
гости доказательство теоремы 1.1 представляет собой не что иное, 
как вывод постулированного Дедекиндом свойства конечных мно-
жеств.
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Подчеркнем, что именно математически строгое определение Де-
декинда является общепринятым в научной литературе; мы, однако, 
будем строить наше изложение на определении 1.1.

Изложение количественной теории ц.н.ч., основанное на опреде-
лении Дедекинда, можно найти в [1], [2].

Утверждение 1.1. Множество, равномощное конечному, само ко-
нечно.

Утверждение 1.2. Любое подмножество конечного множества 
тоже конечно.

Утверждение 1.3. Объединение двух конечных множеств само яв-
ляется конечным множеством.

Справедливость всех трех утверждений сразу следует из опреде-
ления 1.1.

Утверждение 1.4. Пусть A и B – два конечных множества. Тогда 
по крайней мере одно из них равномощно некоторому подмножеству 
другого.

Доказательство. Попросим наблюдателя (см. замечание к опре-
делению 1.1), ставящего мысленные метки на элементы конечных 
множеств, начать ставить свои метки одновременно на элементы 
множеств A и B. Очевидно, что процедура постановки таких меток 
закончится в некоторый момент времени, причем реализуется одна 
из следующих двух ситуаций:
а) Одновременно исчерпаются элементы обоих множеств A и B; 

при этом множества A и B оказываются равномощными. Тем са-
мым справедливость утверждения 1.4 в этом случае установлена.

б) В одном из множеств A, B элементы исчерпаются раньше, чем 
в другом. Справедливость доказываемого утверждения в этом 
случае также очевидна.
Утверждение 1.5. Декартово произведение двух конечных мно-

жеств конечно.
Утверждение 1.5 также можно доказать, опираясь на определе-

ние 1.1. Мы предоставляем эту возможность читателю.
Задачи. 1. Доказать утверждение 1.1, опираясь на определение ко-

нечного множества, данное Дедекиндом.
2. Доказать утверждение 1.2, опираясь на определение конечно-

го множества, данное Дедекиндом.
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3*. Опираясь на определение конечного множества, данное 
Дедекиндом, доказать, что объединение конечного множества 
A и одноэлементного множества {х} конечно.

3. Верно ли, что пересечение двух конечных множеств обяза-
тельно конечно?

4. Верно ли, что разность двух конечных множеств всегда ко-
нечна?

5. Пусть A – конечное множество, а множество B – бесконеч-
но (т.е. не является конечным). Конечна или бесконечна разность 
A \ B?

6. Пусть A – конечное множество, а множество B – бесконечно. 
Конечна или бесконечна разность B \ A?

1.2. ОПРЕДЕЛЕНИЕ ЦЕЛОГО НЕОТРИЦАТЕЛЬНОГО 
ЧИСЛА

Определение 1.2. Пусть A – некоторое непустое конечное 
множество. Рассмотрим класс a всех конечных множеств, равно-
мощных множеству A. Этот класс мы назовем натуральным чи-
слом (числом a). При этом число a будем называть численностью 
множества A.

Определение 1.3. Класс всех конечных множеств, равномощ-
ных пустому множеству , назовем числом «ноль» (0). (Нетрудно 
понять, что этот класс не содержит в качестве своего элемента 
никакого другого множества, кроме .) Ноль по определению яв-
ляется численностью пустого множества.

В общем случае тот факт, что a есть численность конечного 
множества A, будем записывать в виде a = n(A).
Множество всех натуральных чисел будем обозначать че-

рез N.
Множество N0 = N  {0}назовем множеством целых неотрица-

тельных чисел.
Каждый элемент множества N0 будем называть целым неотри-

цательным числом (ц.н.ч.).
Замечание. Два целых неотрицательных числа a и b счита-

ются равными (a = b), если они обозначают один и тот же класс 
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равномощных друг другу конечных множеств. Таким образом, 
равенство двух ц.н.ч. – это их совпадение.

Иногда можно услышать вопрос: зачем нужны два разных 
обозначения для одного и того же класса? Ответ на этот вопрос 
состоит в следующем. Во многих случаях заранее (до проведе-
ния вычислений) невозможно сказать, имеют ли два числовых 
выражения одно и то же числовое значение или нет. Поэтому 
обозначают числовые значения таких выражений с помощью 
разных букв (например, a и b). Если выясняется, что числовые 
значения обоих рассматриваемых выражений совпадают, то пи-
шут a = b.

1.3. СЛОЖЕНИЕ ЦЕЛЫХ НЕОТРИЦАТЕЛЬНЫХ ЧИСЕЛ

Определение 1.4. Суммой a + b двух целых неотрицательных 
чисел a и b называется численность объединения конечных мно-
жеств A и B таких, что 
 a = n(A), b = n(B), A  B = . (1.1)

Иными словами, 
 a + b = n(A  B),  (1.2)

где конечные множества A и B удовлетворяют условиям (1.1).
Это определение и определение целого неотрицательного 

числа вместе образуют фундамент всей количественной теории 
ц.н.ч.

Задача. Доказать, что приведенное выше определение суммы 
двух ц.н.ч. не зависит от выбора конечных множеств A и B, удов-
летворяющих условиям (1.1).

Замечание. У нас остался невыясненным вопрос: всегда 
ли можно найти в классах a и b непересекающиеся множества 
A и B? Следуя [1], мы будем считать, что ответ на этот вопрос 
всегда положителен «ввиду многообразия нашего мира». Тем 
самым мы снова обращаемся к аргументам «физического» ха-
рактера.

Замечание. В силу сказанного выше мы имеем все основания 
считать, что сумма двух произвольно взятых ц.н.ч. определена, 
и притом единственным образом.
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1.4. ВАЖНЕЙШИЕ СВОЙСТВА СЛОЖЕНИЯ: 
КОММУТАТИВНОСТЬ И АССОЦИАТИВНОСТЬ

Теорема 1.2. (О коммутативности сложения в N0). Для любых 
двух ц.н.ч. a и b
справедливо равенство:

 a + b = b + a. (1.3)
Доказательство. Равенство (1.3) сразу следует из определе-

ния 1.4 и коммутативности операции объединения множеств.
Теорема 1.3. (Об ассоциативности сложения в N0). Для любых 

трех ц.н.ч. a, b, c
справедливо равенство:

 (a + b) + c = a + (b + c). (1.4)
Доказательство. Равенство (1.4) непосредственно следует 

из определения 1.4 и ассоциативности операции объединения мно-
жеств.

1.5. ОТНОШЕНИЕ «МЕНЬШЕ» 
И ЕГО ВАЖНЕЙШИЕ СВОЙСТВА

Определение 1.5. Пусть a и b – числа из N0. Будем говорить, 
что a меньше, чем b (и писать a < b), если найдутся конечные 
множества A и B с численностями a и b соответственно и такие, 
что выполнено строгое включение A  B.

Теорема 1.4. (О транзитивности отношения «меньше»). 
Пусть a, b, c – числа из N0. Тогда
 a < b, b < c  a < c. (1.4)

Доказательство. Пусть a < b, b < c. Нетрудно видеть, что тог-
да можно найти конечные множества A, B, C, численности ко-
торых равны соответственно a, b, c, причем выполнены строгие 
включения:
 А  B, B  C  (1.5)

(докажите!). Однако в силу транзитивности строгого включе-
ния множеств имеем из (1.5)

A  C, 
откуда и следует утверждение теоремы.
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Теорема 1.5. (Об антирефлексивности отношения «меньше»). 
Для любого a из N0 неверно, что a < a.

Доказательство. См. теорему 1.1.
Теорема 1.6. (О связности отношения «меньше»). Пусть a 

и b – числа из N0, причем a ≠ b. Тогда имеет место по крайней мере 
одно из двух соотношений:
 a < b, b < a. (1.6)

Доказательство. См. утверждение 1.4.
Теорема 1.7. (Об асимметричности отношения «меньше»). 

Пусть a и b – числа из N0, причем a ≠ b. Тогда одновременно оба 
соотношения (1.6) выполняться не могут.

Доказательство. Утверждение этой теоремы сразу следует 
из теорем 1.4 и 1.5.

Замечание. Совокупность установленных выше свойств от-
ношения «меньше» (транзитивность, антирефлексивность, связ-
ность, асимметричность) позволяет говорить об отношении 
«меньше» как об отношении строгого линейного порядка.

Замечание. Наряду с отношением «меньше» вводятся так-
же отношения «меньше или равно», «больше», «больше или 
равно»:
а) a ≤ b ⇔ a < b или a = b;
б) a > b ⇔ b < a;
в) a ≥ b ⇔a > b или a = b.
Задачи. 1. Верно ли, что 7 ≥ 2?
2. Верно ли, что 7 ≥ 12?
3. Верно ли, что 5 ≤ 3?
4. Верно ли, что 5 ≤ 13?
5. Верно ли, что 5 не меньше 4?
6. Верно ли, что 4 не больше 5?

1.6. СВЯЗЬ ОТНОШЕНИЯ «МЕНЬШЕ» СО СЛОЖЕНИЕМ

Теорема 1.8. Пусть a и b – числа из N0. Тогда
 a < b ⇔ существует такое w  N, что a + w = b. (1.7)

Доказательство. См. определение отношения «меньше» 
и определение сложения в N0.
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Теорема 1.9. (О монотонности сложения). Пусть a, b, c – чи-
сла из N0. Тогда
 a < b  a + c < b + c. (1.8)

Доказательство геометрическое. («На языке множеств»). 
Изо бразим при помощи кругов Эйлера три конечных множества 
A, B, C, численности которых равны соответственно a, b, c, причем 
A  B, C  B = . Теперь, вспоминая определение понятия «мень-
ше», заключаем, что утверждение теоремы геометрически оче-
видно.

Доказательство арифметическое. Пусть a < b; тогда в силу 
(1.7) найдется такое w  N, что

a + w = b.
Прибавим с к обеим частям этого равенства, получим

(a + w) + с = b + с, 
откуда, пользуясь ассоциативностью и коммутативностью 

сложения, имеем:
(a + с) + w = b + с.

В силу теоремы 1.8 из последнего равенства вытекает иско-
мое неравенство

a + c < b + c.
Теорема 1.10. Пусть a, b, c, d – числа из N0.Тогда

 a < b, c < d  a + c < b + d. (1.9)
Доказательство геометрическое. («На языке множеств»). 

Изобразим при помощи кругов Эйлера четыре конечных мно-
жества A, B, C, D численности которых равны соответственно a, 
b, c, d, причем A  B, C  D, B  D= . Теперь, вспоминая опреде-
ление сложения и определение понятия «меньше», заключаем, 
что утверждение теоремы геометрически очевидно.

Доказательство арифметическое. Пусть a < b, c < d. Имеем 
в силу монотонности сложения:

a + c < b + c,
c + b < d + b, 

откуда, пользуясь коммутативностью сложения и транзи-
тивностью отношения «меньше», получаем требуемый ре-
зультат.
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1.7. СОКРАТИМОСТЬ СЛОЖЕНИЯ
Теорема 1.11. (О сократимости сложения). Пусть a, b, c – числа 

из N0. Тогда
 a + c = b + c  a = b. (1.10)

Доказательство. Предположим противное. Пусть a + c = b + c, 
но a ≠ b. Тогда в силу связности отношения меньше обязательно 
должно быть a < b или b < a. Прибавляя c к каждому из этих нера-
венств, получим, что должно соответственно быть

a + c < b + c или b + c < a + c. В обоих случаях приходим к про-
тиворечию с условием.

Теорема 1.12. Пусть a, b, c – числа из N0. Тогда
 a + c < b + c  a < b. (1.11)

Доказательство этой теоремы также может быть проведено 
от противного, аналогично доказательству теоремы 1.11.

1.8. ВЫЧИТАНИЕ. ОБРАТНОСТЬ ВЫЧИТАНИЯ 
К СЛОЖЕНИЮ. МОНОТОННОСТЬ ВЫЧИТАНИЯ

Определение 1.6. Пусть a и b – числа из N0 такие, что b ≤ a. 
Тогда, очевидно, найдутся

конечные множества A и B такие, что
 n(A) = a, n(B) = b,  (1.12)
 В  A. (1.13)
Разностью чисел a и b назовем численность разности множеств 

A и B. Иными словами, 
 a – b = n(A \ B). (1.14)

Число a называется при этом уменьшаемым, а число b – вычи-
таемым.

Замечание. Опираясь на теорему 1.1, нетрудно показать, 
что определение разности чисел a и b не зависит от выбора конеч-
ных множеств A и B, удовлетворяющих условиям (1.12), (1.13). 
Иными словами, разность (1.14) определена единственным образом.

Замечание. Продемонстрируем важность условия (1.13) на приме-
ре. Пусть A – множество численности 2, а B – множество численности 
1, и пусть A и B не пересекаются. Тогда A \ B = A, и мы получаем, что

n(A \ B) = n(A) = 2 ≠ 2 – 1.
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Замечание. Подчеркнем, что, в отличие от сложения, опера-
ция вычитания выполнима в N0 не для всех пар ц.н.ч., а только 
для таких пар (a, b), где b ≤ a.

Теорема 1.13. (Об обратности вычитания к сложению). Пусть 
a, b, c – числа из N0. Тогда
 a – b = c ⇔ a = c + b. (1.15)

Доказательство. См. определения 1.4 и 1.6.
Утверждение. Пусть a и b – числа из N0 такие, что b ≤ a.

Тогда
 (a – b) + b = a. (1.16)

Доказательство геометрическое. («На языке множеств»). 
Изо бразим при помощи кругов Эйлера конечные множества 
A и B, удовлетворяющие условиям (1.12), (1.13). Теперь доказы-
ваемое утверждение сразу следует из независимости определе-
ния суммы ц.н.ч. от выбора соответствующих непересекающихся 
множеств (а именно, множеств A \ B и B).

Доказательство арифметическое. В силу теоремы 1.13 до-
казываемое равенство (1.16) равносильно очевидному равенству

(a – b) = a – b.
Тем самым справедливость (1.16) доказана.
Утверждение. Пусть a и b – числа из N0. Тогда

 (a + b) – b = a. (1.17)
Доказательство геометрическое. («На языке множеств»). 

Изо бразим при помощи кругов Эйлера конечные непересекаю-
щиеся множества A и B, удовлетворяющие условиям (1.12). Те-
перь доказываемое утверждение сразу следует из независимости 
определения разности ц.н.ч. от выбора соответствующих мно-
жеств (в нашем случае речь идет о множествах A  B и B).

Доказательство арифметическое. В силу теоремы 1.13 
доказываемое равенство (1.17) равносильно очевидному ра-
венству

(a + b) = a + b.
Тем самым справедливость (1.17) доказана.
Теорема 1.14. (О монотонности вычитания). Пусть a, b, c – 

числа из N0 и пусть, кроме того, а ≥ c. Тогда
 a < b  a – c < b – c. (1.18)
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Доказательство геометрическое. («На языке множеств»). 
Изо бразим при помощи кругов Эйлера три конечных множества 
A, B, C, численности которых равны соответственно a, b, c, причем 
C  A  B. Дальнейшее очевидно.

Доказательство арифметическое. Предположим противное, 
а именно, что a < b, но (1.18) не выполнено. Тогда в силу связности 
отношения «меньше» должно быть

a – c = b – c либо b – c < a – c.
В каждом из двух возможных случаев, прибавляя c к обеим ча-

стям соответствующего полученного соотношения и пользуясь ра-
венством (1.16), приходим к противоречию с условием.

Задача. Пусть a, b, c, d – числа из N0, и пусть a < b, c > d. Дока-
зать двумя способами, что

a – c < b – d.

1.9. ДАЛЬНЕЙШИЕ СВОЙСТВА ВЫЧИТАНИЯ

Теорема 1.15. (О вычитании числа из суммы). Пусть a, b, c – 
числа из N0, тогда
 (a + b) – c = a + (b – c) (1.19)

(предполагается, что b ≥ c).
Доказательство геометрическое. Изобразим при помощи кру-

гов Эйлера три конечных множества A, B, C, численности которых 
равны соответственно a, b, c, причем
 A  B = , C  B. (1.20)

Нетрудно видеть, что при условии (1.20) справедливо ра-
венство

(A  B) \ C = A  (B \ C), 
откуда с учетом (1.20) легко следует утверждение теоремы.
Задача. Доказать (1.19) арифметическим способом, опираясь 

на доказанные ранее свойства сложения и обратность вычитания 
к сложению.

Теорема 1.16. (О вычитании суммы из числа). Пусть a, b, c – 
числа из N0, тогда
 a – (b + c) = (a – b) – c (1.21)

(предполагается, что a ≥ b + c).
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Доказательство геометрическое. Изобразим при помощи кру-
гов Эйлера три конечных множества A, B, C, численности которых 
равны соответственно a, b, c, причем

  B  C = , B  C  A. (1.22)
Нетрудно видеть, что справедливо равенство

A \ (B  C) = (A \ B) \ C, 
откуда с учетом (1.22) легко следует утверждение теоремы.
Задача. Доказать (1.21) арифметическим способом.
Теорема 1.17. (О вычитании разности из числа). Пусть a, b, 

c – числа из N0, тогда
 a – (b – c) = (a + с) – b (1.23)

(предполагается, что a + c ≥ b ≥ c).
Доказательство геометрическое. На этот раз (в отличие от пре-

дыдущего) нам не удастся изобразить на диаграмме Эйлера все 
интересующие нас множества в виде кругов. Итак, условно изо-
бразим в виде областей на плоскости множества A, B, C (числен-
ности которых равны соответственно a, b, c), соблюдая при этом 
следующие условия:
 A  C = , C  B, (B \ C)  A (1.24)

(см. рис. 1.1). С учетом (1.24), очевидно, имеем:
 A \ (B \ C) = (A  C) \ B,  (1.25)

откуда, переходя к численностям множеств в обеих частях 
(1.25), сразу получаем требуемый результат.

Задача. Доказать (1.23) арифметическим способом.

Рис. 1.1
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Теорема 1.18. (О вычитании суммы из суммы). Пусть a, b, c, 
d – числа из N0, тогда
 (a + b) – (c + d) = (a – c) + (b – d) (1.26)

(предполагается, что a ≥ c, b ≥ d).
Доказательство геометрическое. Изобразим при помощи кру-

гов Эйлера четыре конечных множества A, B, C, D, численности 
которых равны соответственно a, b, c, d, причем
 A  B = ,  
 C  D = , 
 C  A, D  B. (1.27)

Нетрудно видеть, что при условиях (1.27) справедливо ра-
венство

(A  B) \ (C  D) = (A \ C)  (B \ D), 
откуда с учетом (1.27) легко следует утверждение теоремы.
Задача. Доказать (1.26) арифметическим способом.
Теорема 1.19. (О вычитании разности из разности). Пусть a, b, 

c, d – числа из N0, тогда
 (a – b) – (c – d) = (a + d) – (b + c) (1.28)

(предполагается, что a ≥ b, c ≥ d, a + d ≥ b + c). 
Доказательство геометрическое. Изобразим в виде областей 

на диаграмме Эйлера четыре конечных множества A, B, C, D, чи-
сленности которых равны соответственно a, b, c, d, причем выпол-
нены следующие шесть условий, отвечающих структуре выраже-
ний из (1.28):

A  D = ,
B  C = , 

 B  A, D  C,  
 C \ D  A \ B,  
 B  C  A  D (1.29)

(см. рис. 1.2). Нетрудно видеть, что если все шесть условий 
(1.29) выполнены, то справедливо равенство
 (A \ B) \ (C \ D) = (A  D) \ (B  C). (1.30)

Переходя в (1.30) к численностям множеств в правой и левой 
частях с учетом (1.29) получаем требуемый результат.
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Рис. 1.2

Задача. Доказать (1.28) арифметическим способом.

1.10. УПОРЯДОЧЕНИЕ МНОЖЕСТВА N0

Шаг нулевой.
У нас уже есть обозначение для класса, содержащего пустое 

множество:
 0 = n( ). (1.31)

Так как пустое множество является подмножеством любого не-
пустого конечного множества A и при этом не совпадает с A, то, 
очевидно, 

0 < n(A), 
т.е. ноль меньше любого ненулевого ц.н.ч. (любого натурально-

го числа).
Начнем теперь вводить обозначения для остальных ц.н.ч.
Шаг первый.
Возьмем какой-нибудь произвольный элемент w и рассмотрим 

множество {w}, т.е. такое множество, в котором кроме элемента w 
не содержится ничего. Это множество, очевидно, конечно.

Далее, рассмотрим класс всех конечных множеств, равномощных 
множеству {w}. Обозначим этот класс цифрой 1. Таким образом, 
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 1 = { {w}, {a}, { · }, {@}, …}. (1.32)
При этом в силу сказанного выше имеем:

 0 < 1. (1.33)
Шаг второй.
Двух числовых символов 0 и 1 нам достаточно, чтобы обра-

зовать множество
 M = {0; 1; 1 + 1; 1 + 1 + 1; …}. (1.34)

В силу монотонности сложения, очевидно, имеем:
 0 < 1 < 1 + 1 < 1 + 1 + 1 < … (1.35)

Элементы множества М, очевидно, представляют собой раз-
личные ц.н.ч., строго упорядоченные по возрастанию.

Шаг третий. Теперь наша цель – доказать, что М = N0. 
Для этого достаточно доказать, что каждое натуральное число 
представимо в виде конечной суммы 1 + 1 + 1 + … + 1. Итак, 
рассмотрим произвольное натуральное число

a = n(A), 
где A – соответствующее конечное множество:

A = {x, y, z, …, w}.
Представим множество A в виде объединения одноэлемен-

тных множеств:
A = {x}  {y}  {z}  …  {w};

переходя здесь к соответствующим численностям, имеем
n(A) = n({x}) + n({y}) + n({z}) + … + n({w}), 

т.е.
n(A) = 1 + 1 + 1 + … + 1, 

что и требовалось установить.
Следствие. В силу антирефлексивности отношения «мень-

ше» между элементами строго возрастающей последовательно-
сти (1.35) не может «поместиться» никакое ц.н.ч.

Замечание. С этого момента мы начинаем использовать 
наши привычные обозначения для натуральных чисел:
 1; 1 + 1 = 2; 1 + 1 + 1 = 3;  
 1 + 1 + 1 + 1 = 4; и т.д. (1.36)

Отсюда легко следует, что
n({1}) = 1, n({1; 2}) = 2, n({1; 2; 3}) = 3, …, 

 n({1; 2; 3;…; k}) = k, … (1.37)
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Замечание. Так как все количественные натуральные числа те-
перь упорядочены по возрастанию, то мы, очевидно, можем поль-
зоваться ими же, как номерами при пересчете объектов. При этом 
если последний сосчитанный объект будет иметь номер k, то это 
одновременно будет означать, что общее количество сосчитан-
ных объектов равно k.

1.11. УМНОЖЕНИЕ: КОММУТАТИВНОСТЬ 
И АССОЦИАТИВНОСТЬ

Наконец, мы переходим к действиям второй ступени. Теперь 
в нашем изложении место диаграмм Эйлера займут более подроб-
ные диаграммы, где будут изображены отдельные элементы рас-
сматриваемых множеств.

Определение 1.7. Пусть a и b – числа из N0; a = n(A), b = n(B). 
Произведением чисел a и b назовем численность декартова произ-
ведения множеств A и B:
 a ∙ b = n(A × B). (1.38)

Замечание. Будем обозначать равномощность двух мно-
жеств с помощью символа ~. Нетрудно видеть, что если A ~ A1, 
B ~ B1, то A × B ~ A1 × B1. Поэтому введенное определение произ-
ведения чисел a и b не зависит от выбора конкретных множеств 
A и B.

С математической точки зрения определение 1.7 удобно тем, 
что оно выражается единой формулой, не требует отдельного рас-
смотрения каких-либо частных случаев. Однако за внешней красо-
той формулы (1.38) не так легко разглядеть смысл введенной опе-
рации умножения. Поэтому мы приведем еще одно определение, 
эквивалентное предыдущему, но при этом еще и объясняющее 
происхождение операции умножения.

Определение 1.8. Пусть a и b – числа из N0. Положим по опре-
делению:
1) если b > 1, то
 a ∙ b = a + a + a + … + a (в сумме b слагаемых);
2) a ∙ 1 = a;
3) a ∙ 0 = 0.
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Замечание. Таким образом, в определении 1.8 умножение яв-
ным образом вводится как кратное сложение. Для того, чтобы 
доказать, что оба приведенные выше определения экавивалентны, 
достаточно заметить, что A ×  = .

Замечание. В дальнейшем, в случае, когда оба сомножите-
ля обозначены не цифрами, а буквами, мы будем опускать точку 
в обозначении произведения.

Замечание. Из определения 1.8 легко следует, что произведе-
ние двух любых натуральных чисел также является натуральным 
числом (т.е. не равно нулю).

Теорема 1.20. (О коммутативности умножения). Пусть a и b – 
числа из N0; a = n(A), b = n(B). Тогда
 ab = ba. (1.39)

Первое доказательство. (Опираемся на определение 1.7). Не-
трудно видеть, что 

A × B ~ B × A, 
откуда в силу (1.38) имеем:

ab = n(A × B) = n(B × A) = ba.
Второе доказательство. (Опираемся на определение 1.8). Нам 

будет удобно провести доказательство на примере, когда a = 4, 
b = 5. Рассмотрим множество W, элементы которого расположим в 5 
горизонтальных строк, по 4 элемента в каждой строке (см. рис. 1.3).

Рис. 1.3
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Представим теперь множество W в виде объединений непересе-
кающихся «подмножеств-строк» (см. рис. 1.4):
 W = A1  A2  A3  A4  A5 (1.40)

Рис. 1.4

Переходя в (1.40) к численностям соответствующих множеств, 
получаем:

n(W) = n(A1  A2  A3  A4  A5) =
= n(A1)+ n(A2) + n(A3) + n(A4) + n(A5) =

  = 4 + 4 + 4 + 4 + 4 = 4 ∙ 5. (1.41)
Представляя аналогичным образом множество W в виде объ-

единения непересекающихся «подмножеств-столбцов», без труда 
получим равенство, аналогичное (1.41):
 n(W) = 5 + 5 + 5 + 5 = 5 ∙ 4. (1.42)

Из двух последних равенств, очевидно, имеем
 4 ∙ 5 = 5 ∙ 4. 

Общий случай рассматривается аналогично.
Теорема 1.21. (Об ассоциативности умножения). Пусть a, b, c – 

числа из N0; a = n(A), b = n(B), c = n(C). Тогда
 (ab)c = a(bc). (1.43)
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Первое доказательство. (Опирающееся на определение 1.7). 
Очевидно, что

(A × B) × C ~ A × (B × C), 
откуда имеем:

n[(A × B) × C] = n[A × (B × C)].
Из последнего равенства с учетом определения 1.7 и вытекает 

утверждение теоремы.
Второе доказательство. (Опирающееся на определение 1.8). 

Для определенности будем считать, что a > 1, b > 1, c > 1. Нарисуем 
параллелепипед, составленный из единичных кубиков имеющий 
ширину a, глубину b и высоту c. Теперь подсчитаем количество 
кубиков в нашем параллелепипеде двумя различными способами. 
Один раз – по слоям, параллельным боковой стенке, другой раз – 
по слоям, параллельным передней стенке.

Приравнивая результаты и учитывая коммутативность умноже-
ния, получим искомое соотношение (1.43).

Третье доказательство. (См., например, [3]). Это доказатель-
ство (как и второе доказательство коммутативности умножения) 
удобно проводить на частном примере. Посчитаем двумя разными 
способами количество «плюсов» на рис. 1.5. Один раз – по стро-
кам, а другой раз – по столбцам.

Рис. 1.5
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В результате получим:
 (5 ∙ 4) ∙ 3 = (5 ∙ 3) ∙ 4. (1.44)

Теперь придется призвать на помощь коммутативность умноже-
ния. Вначале преобразуем левую часть (1.44). Имеем

(5 ∙ 4) ∙ 3 = 3 ∙ (5 ∙ 4).
Далее, преобразуем правую часть (1.44):

(5 ∙ 3) ∙ 4 = (3 ∙ 5) ∙ 4.
Приравнивая правые части двух последних равенств, получаем 

требуемый результат:
(3 ∙ 5) ∙ 4 = 3 ∙ (5 ∙ 4).

Общий случай рассматривается аналогично.

1.12. УМНОЖЕНИЕ: ДИСТРИБУТИВНОСТЬ, 
МОНОТОННОСТЬ, СОКРАТИМОСТЬ

Перейдем теперь к доказательству дальнейших свойств умно-
жения.

Теорема 1.22. (О дистрибутивности умножения относительно сло-
жения). Пусть a, b, c – числа из N0; a = n(A), b = n(B), c = n(C). Тогда
 (a + b)c = ac + bc; (1.46)
 c(a + b) = ca + cb. (1.47)

Замечание. Соотношение (1.46) называется дистрибутивностью 
справа, а соотношение (1.47) – дистрибутивностью слева умноже-
ния относительно сложения.

Первое доказательство теоремы 1.22. Прежде всего, заметим, 
что (1.47) вытекает из (1.46) в силу коммутативности умножения. По-
этому достаточно доказать соотношение (1.46).

Не ограничивая общности, можно считать, что
 A  B = . (1.48)

Далее, имеем в силу дистрибутивности декартова произведения 
относительно объединения множеств:
 (A  B) × C = (A × C)  (B × C). (1.49)

Заметим, что в силу (1.48) справедливо соотношение
 (A × C)  (B × C) = . (1.50)

Переходя теперь в (1.49) к численностям соответствующих 
множеств, с учетом (1.48) и (1.50) получаем требуемый результат.
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Второе доказательство теоремы 1.22. См. рис. 1.6 (доказа-
тельство проводится на примере, когда a = 5, b = 3, c = 4).

Рис. 1.6

Считаем численность множества, изображенного на рис. 1.6, 
двумя способами: один раз – «по строкам»; другой раз – отдельно 
подсчитываем количество белых и отдельно черных кружков, а ре-
зультаты складываем.

Теорема 1.23. (О дистрибутивности умножения относительно 
вычитания). Пусть a, b, c – числа из N0, причем b ≤ a. Тогда
 (a – b)c = ac – bc; (1.51)
 c(a – b) = ca – cb. (1.52)

Доказательство. Как и в случае теоремы 1.22, достаточно 
доказать только первое из двух вышеприведенных равенств. 
Итак, начнем доказывать (1.51). Иногда приходится слышать та-
кой «совет»: нужно раскрыть скобки в (1.51), и теорема будет 
доказана…

«Совет» этот совершенно неправильный. Дело в том, что мы до-
казываем именно саму возможность раскрытия скобок в (1.51)!

Для установления (1.51) воспользуемся обратностью вычита-
ния к сложению, а именно тем фактом, что имеют место следую-
щие равносильности:

(a – b)c = ac – bc ⇔ (a – b)c + bс = ac ⇔ [(a – b) + b]с =
= ac ⇔ ac = ac, 

откуда и следует утверждение теоремы.
Теорема 1.24. (О монотонности умножения). Пусть a, b – числа 

из N0, причем a < b. Тогда для любого с  N справедливо
 ac < bc (1.53)
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Доказательство теоремы. Из условий теоремы (c учетом связи 
отношения «меньше» со сложением) следует, что найдется d  N та-
кое, что

a + d = b.
Умножая это равенство на с и пользуясь дистрибутивностью умно-

жения относительно сложения, получаем
ac + dc = bc.

Поскольку dc  N, отсюда сразу следует (1.53).
Замечание о сократимости умножения.
Пусть a, b, c – числа из N0, причем с ≠ 0. Тогда если ac = bc, то a = b.
Доказательство. Будем рассуждать от противного. Пусть ac = bc, 

но a ≠ b. Тогда либо a < b, либо b < a. В обоих случаях, пользуясь мо-
нотонностью умножения, получаем противоречие с предположением 
ac = bc.

Задачи. Пусть a, b, c, d  N0. Доказать, что:
1) (a + b)2 = a2 + 2ab + b2;
2) (a – b)2 = a2 – 2ab + b2;
3) a2 – b2 = (a – b)(a + b);
4) a2 + b2 ≥ 2ab.

1.13. ДЕЛЕНИЕ КАК ОПЕРАЦИЯ, ОБРАТНАЯ 
УМНОЖЕНИЮ

Определение 1.9. Пусть a, b, c  N0, причем b ≠ 0. Скажем, что 
 a : b = c (1.54)

тогда и только тогда, когда
 a = cb. (1.55)

Замечание. Запись (1.54) читается так: частное от деления a на b 
равно c. Число a в соотношении (1.54) называется делимым, число b – 
делителем, а число c (как уже было отмечено) – частным.

Замечание. Из определения 1.9 следует, что деление является 
обратной операцией по отношению к умножению.

Замечание. Деление a : b (подобно вычитанию) выполнимо 
в N0 не всегда. Например, операция 5 : 2 в N0 не выполнима. Дей-
ствительно, предположим противное, а именно, что существует 
c  N0 такое, что 



35

Глава 1. Количественная теория целых неотрицательных чисел

 5 : 2 = с,  
или, что то же самое, 

 5 = 2 с. (1.56)
Очевидно, что ни одно с из числового ряда {3; 4; 5; …} не мо-

жет быть решением уравнения (1.56). Что касается остальных 
значений с, т.е. значений из начального отрезка ряда ц.н.ч.{0; 1; 
2}, то их непригодность для решения (1.56) проверяется пере-
бором.

Замечание. Деление на 0 запрещено в N0 по следующей причи-
не. Пусть a ≠ 0. Тода из равенства a : 0 = c следовало бы (из опреде-
ления деления как операции, обратной умножению), что a = c ∙ 0, 
т.е. что a = 0. Тем самым мы пришли бы к противоречию.

Если же с самого начала взять a = 0, то мы видим, что равенство 
0 = c ∙ 0 оказывается справедливым при любом с из N0, что нас тоже 
не устраивает, так как мы хотим, чтобы результат деления опреде-
лялся однозначно.

Теорема 1.25. (О единственности деления). Пусть a, b, c, d  N0, 
причем b ≠ 0. Тогда, если
 a : b = c,  (1.57)
 a : b = d,  (1.58)

то
 c = d. (1.59)

Доказательство. Предположим противное, а именно, что су-
ществуют такие a, b ≠ 0, c, d  N0, для которых (1.57) и (1.58) вы-
полнено, но 
 c ≠ d. (1.60)

Имеем тогда из (1.57) и (1.58):
 a = cb, a = db,  

откуда
 cb = db. 

Cокращая на b, получаем, что c = d, т.е. мы пришли к противо-
речию с предположением (1.60). Теорема доказана.

Теорема 1.26. Пусть a, b, c  N0, причем b ≠ 0. Тогда
 (ab) : b = a. (1.61)
Кроме того, если частное a : b существует, то

 (a : b) b = a. (1.62)
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Доказательство. Докажем, например, соотношение (1.61). 
Из определения деления следует, что (1.61) равносильно соотно-
шению
 (ab) = ab,  

которое, очевидно, справедливо для любых a и b.
Cоотношение (1.62) доказывается аналогично.
В следующей теореме устанавливаются свойства деления в N0, 

которым могут быть сопоставлены известные из школы правила 
действий с дробями.

Теорема 1.27. Пусть a, b, c, d  N0. Тогда в предположении, 
что все встречающиеся разности и частные существуют в N0, 
имеем:
 (a : b) ± (c : d) = (ad ± bc) : (bd); (1.63)
 (a : c) ∙ (b : d) = (ab) : (cd); (1.64)
 (a : b) : (c : d) = (ad) : (bc). (1.65)

Доказательство. Докажем, например, соотношение (1.63) 
в случае верхних знаков. Имеем:
 (a : b) + (c : d) = (ad + bc) : (bd) 
  (обратность деления к умножению) 
 [(a : b) + (c : d)](bd) = (ad + bc) 
  (дистрибутивность умножения) 
 (a : b)(bd) + (c : d)(bd) = (ad + bc) 
  (коммутативность умножения) 
 (a : b)(bd) + (c : d)(db) = (ad + bc) 
  (ассоциативность умножения) 
 [(a : b)b]d + [(c : d)d]b = (ad + bc) 
  (обратность умножения к делению) 
 ad + cb = (ad + bc) 
  (коммутативность умножения) 
 ad + bc = (ad + bc). 

Тем самым справедливость соотношения (1.63) установлена.
Задачи. Пусть a, b, c  N0. В каких из приведенных ниже выра-

жений можно раскрывать скобки? (Все встречающиеся разности 
и частные предполагаются существующими.)
1) (a + b)c;
2) c(a + b);
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3) (a – b)c;
4) c(a – b);
5) (a + b) : c;
6) c : (a + b);
7) (a – b) : c;
8) c : (a – b).
Задача. Пусть a, b, c, d  N0, причем a < b, c > d > 0. Доказать, 

что a : c < b : d. (Частные a : c и b : d предполагаются существую-
щими в N0.

1.14. ДЕЛЕНИЕ С ОСТАТКОМ

Определение 1.10. Пусть a  N0, b  N. Разделить a на b с остат-
ком – это значит представить a в виде
 a = bq + r, где r < b (1.66)

(подразумевается, что q и r  N0). При этом число q называется 
неполным частным, а число r – остатком.

Прежде всего, заметим, что деление нацело, рассмотренное 
нами в предыдущем параграфе, есть частный случай деления 
с остатком.

Заметим, далее, что случай b = 1 неинтересен, поскольку 
для любого a  N0 имеем тогда:

a = 1 ∙ a + 0.
Особого упоминания заслуживает также случай, когда

 a < b. (1.67)
В этом случае (1.66), очевидно, превращается в равенство

 a = b ∙ 0 + a (1.68)
(т.е. q = 0, r = a).

Таким образом, для доказательства существования представле-
ния числа a в виде (1.66) нам достаточно ограничиться случаем, 
когда
 a ≥ b. (1.69)

Считая условие (1.69) выполненным, будем теперь рассуждать 
следующим образом. Рассмотрим разность a – b ≡ r1; если r1 < b, 
то искомое представление числа a получено:

a = b + r1.
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В противном случае рассмотрим разность a – 2b ≡ r2; если r2 < b, 
то искомое представление числа a получено:

a = 2b + r2.
В противном случае рассмотрим разность a – 3 ≡ r3; если r3 < b, 

то искомое представление числа a получено:
a = 3b + r3.

И так далее. Рано или поздно, этот процесс закончится, и мы по-
лучим искомое представление числа a.

Итак, нами установлен следующий результат.
Теорема 1.28. (О существовании деления с остатком). Пусть a 

 N0, b  N. Тогда обязательно найдутся такие q, r  N0, что выпол-
нено (1.66).

Теорема 1.29. (О единственности деления с остатком). Пусть a 
 N0, b  N. Тогда если для некоторых ц.н.ч. q, r, q1, r1 выполнены ра-
венства
 a = bq + r, где r < b; (1.70)
 a = bq1 + r1, где r1 < b,  (1.71)

то
 q = q1, r = r1. (1.72)

Доказательство. Предположим противное, а именно, что суще-
ствуют не совпадающие пары чисел из N0:
 (q, r) ≠ (q1, r1) (1.73)

такие, что (1.70) и (1.71) выполнены. Имеем тогда из (1.70), (1.71):
 bq + r = bq1 + r1. (1.74)

Рассмотрим теперь два случая.
Первый случай: q ≠ q1. Тогда, не ограничивая общности, можно 

считать, что q > q1. Следовательно, мы можем переписать (1.74) 
в виде
 b(q – q1) + r = r1. 

Это равенство, очевидно, не может выполняться, так как левая 
часть здесь строго больше правой. (Подумайте почему!)
Второй случай: q = q1. Но тогда (1.74) превращается в равенство 

r = r1, и мы приходим к противоречию с предположением. Теорема 
доказана.

Задача. Пусть b – натуральное число, большее единицы. Сколько 
различных остатков существует при делении на b?
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1.15. ДЕЛЕНИЕ НА РАВНЫЕ ЧАСТИ (С ОСТАТКОМ)
В отличие от остальных арифметических действий, операция 

деления (в том числе – деления с остатком) была введена выше 
без опоры на «язык множеств». Однако для будущего учителя 
начальных классов владение материальной интерпретацией де-
ления, несомненно, необходимо.

В этом параграфе мы восполним вышеуказанный пробел, 
введя интерпретацию деления (с остатком) как процедуры 
разделения конечного множества объектов на равные части.

Для того, чтобы сделать наше изложение возможно менее 
громоздким, мы ограничимся рассмотрением конкретного при-
мера (переход к общему случаю не вызывает затруднений).

Рис. 1.7

Итак, рассмотрим множество A, представляющее собой со-
вокупность 17 «крестиков» (см. рис. 1.7), и начнем расклады-
вать элементы этого множества по пяти ящикам. Раскладыва-
ние элементов по ящикам происходит так: кладем по очереди 
по одному элементу в каждый ящик (после пятого ящика воз-
вращаемся снова к первому и т.д.). Мы поступаем так, рассчи-
тывая в результате получить одно и то же количество элементов 
в каждом ящике. Однако два элемента оказываются «лишними» 
(см. рис. 1.8).



40

Математика и информатика. Часть 2

Рис. 1.8

Их мы кладем в маленькую корзинку, расположенную справа 
от ящиков (см. рис. 1.9).

Рис. 1.9

В результате приходим к равенству для множеств:
 A = A′  A′′  A′′′  A′′′′  A′′′′′  R. (1.75)

Так как все штрихованные множества в правой части (1.75) по-
парно равномощны и все множества в правой части (1.75) попарно 
не пересекаются друг с другом, то, переходя к численностям мно-
жеств в (1.75), имеем:
 17 = 5n(A′) + n(R). (1.76)

По своему построению, n(R) < 5. Поэтому (1.76) представляет 
собой не что иное, как результат деления 17 на 5 в смысле опреде-
ления 1.10 из предыдущего параграфа. Однако, как было показа-
но в теореме 1.29, деление с остатком определено единственным 
образом.



41

Глава 1. Количественная теория целых неотрицательных чисел

Поэтому нет ничего удивительного в том, что n(A′) = 3 – это 
неполное частное от деления 17 на 5, а n(R) = 2 – это остаток от де-
ления 17 на 5.

Нетрудно видеть, что описанная выше процедура без измене-
ний переносится на общий случай и позволяет интерпретировать 
операцию деления с остатком при помощи предметных действий.

1.16. ДЕЛЕНИЕ ПО СОДЕРЖАНИЮ (С ОСТАТКОМ)

В этом параграфе мы рассмотрим еще одну интерпретацию 
операции деления с остатком при помощи предметных действий. 
Как и в предыдущем параграфе, мы ограничимся рассмотрением 
примера, поскольку перенос наших действий на общий случай 
не вызывает затруднений.

Пусть снова нам дано множество A, состоящее из 17 «крести-
ков» (см. рис. 15.1). Будем на этот раз откладывать элементы мно-
жества A в горизонтально расположенные «пакеты» B′, B′′, B′′′…, 
по пять штук в каждый пакет. При этом у нас останутся «лиш-
ние» элементы, которые образуют то же самое множество R, 
что и в случае разделения множества A на пять равных частей 
(см. рис. 16.1).

Рис. 1.10

Таким образом, имеем равенство для множеств:
 A = B′  B′′  B′′′  R. (1.77)

Переходя в этом равенстве к численностям множеств из правой 
и левой частей получим:
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 17 = n(B′) + n(B′′) + n(B′′′) + n(R) (1.78)
(мы учли, что все множества в правой части (1.77) попарно 

не пересекаются).
Временно обозначая количество горизонтальных пакетов че-

рез s и вспоминая, что численность каждого из них равна 5, пере-
пишем (1.78) в виде:
 17 = 5s + n(R),  (1.79)

где n(R) < 5 по построению. Но тогда, очевидно, что (1.79) пред-
ставляет собой не что иное, как результат деления с остатком числа 
17 на 5. Как и в предыдущем параграфе, в силу единственности 
деления с остатком не удивляемся, что s = 3 оказалось неполным 
частным, а n(R) – остатком от деления 15 на 5.

ЗАДАЧИ К ГЛАВЕ 1

1. Пусть A – бесконечное множество (т.е. множество, не являю-
щееся конечным). В силу определения, принадлежащего Дедекин-
ду, это означает, что у множества A имеется равномощное A соб-
ственное подмножество B. Доказать, опираясь на определение 
Дедекинда, что множество B также бесконечно.

2. Проиллюстрировать на диаграмме Эйлера – Венна тождество, 
справедливое для произвольно взятых целых неотрицательных чисел:

(a + b) – (c – d) = (a – c) + (b + d)
(все разности предполагаются существующими в N0). Доказать 

это тождество, опираясь на арифметические законы.
3. Проиллюстрировать на диаграмме Эйлера – Венна тождество, 

справедливое для произвольно взятых целых неотрицательных чисел:
(a + b) – (c – d) = (a + d) + (b – c)

(все разности предполагаются существующими в N0). Доказать 
это тождество, опираясь на арифметические законы.

4. Проиллюстрировать на диаграмме Эйлера – Венна тождест-
во, справедливое для произвольно взятых целых неотрицательных 
чисел:

(a – b) – (c – d) = (a – c) + (d – b)
(все разности предполагаются существующими в N0). Доказать 

это тождество, опираясь на арифметические законы.
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5. В каких ситуациях, связанных с предметными действиями, 
деление по содержанию может быть осуществлено быстрее, чем 
деление на равные части?

6. В каких ситуациях, связанных с предметными действиями, 
деление на равные части может быть осуществлено быстрее, чем 
деление на равные части?

7. Заменим в соотношениях из задач № 4–8 все плюсы на знаки 
умножения, а все минусы – на знаки деления. Получатся ли у нас 
верные тождества? (Все частные предполагаются существующими 
в N0.)
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ГЛАВА 2.
ДЕСЯТИЧНАЯ СИСТЕМА СЧИСЛЕНИЯ 
И АРИФМЕТИЧЕСКИЕ АЛГОРИТМЫ 

С ТОЧКИ ЗРЕНИЯ 
ТЕОРИИ МНОЖЕСТВ

Эта глава посвящена обоснованию базовых арифметиче-
ских алгоритмов – сложения и вычитания столбиком, умно-
жения столбиком и деления уголком. Обычно обоснование 
этих алгоритмов проводится не на «языке множеств», а чисто 
арифметически, с опорой на коммутативность и ассоциатив-
ность сложения и умножения, дистрибутивность умножения 
относительно сложения и вычитания и другие арифметиче-
ские законы.

Такой подход представляется излишне громоздким и не впол-
не отвечающим существу дела, поскольку арифметические вы-
кладки лишь приблизительно следуют за шагами упомянутых 
алгоритмов.

На наш взгляд, более полезным для педагога, более нагляд-
ным и убедительным является излагаемый ниже подход к обо-
снованию арифметических алгоритмов, опирающийся на эле-
ментарную («наивную») теорию множеств.

2.1. ДЕСЯТИЧНАЯ СИСТЕМА

Рассмотрим какое-нибудь натуральное число в привычной нам 
десятичной записи. Например, число
 457. (2.1)

Такая, привычная нам, запись называется краткой. (В этой за-
писи присутствует 7 единиц первого разряда, 5 единиц второго 
разряда и 4 единицы третьего разряда.)
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Подробная десятичная запись этого же числа выглядит так:
 4 ∙ 102 + 5 ∙ 101 + 7 ∙ 100. (2.2)

Поскольку 100 = 1,101 = 10, вместо записи вида (2.2) используют 
обычно запись
 4 ∙ 102 + 5 ∙ 10 + 7 (2.3)

(и эту запись тоже называют подробной).
В общем случае подробная десятичная запись натурального чи-

сла a выглядит так:
 a = ak10k + ak – 1 10k –1

 + … + a110 + a0. (2.4)
Соответствующая краткая запись выглядит соответственно так:

 ________________ 
 a = akak – 1 …a1a0 (2.5)

(черта над выражением в правой части (2.5) нужна для того, что-
бы не перепутать это выражение с обозначением произведения).

Подчеркнем, что в (2.4) и (2.5) ak, ak – 1, …, a1, a0 – цифры, т.е. 
принадлежат множеству {0, 1, 2, 3, …, 9}, причем ak ≠ 0.

2.2. СУЩЕСТВОВАНИЕ ДЕСЯТИЧНОЙ ЗАПИСИ 
НАТУРАЛЬНОГО ЧИСЛА

Вопрос о том, каждое ли натуральное число можно предста-
вить в десятичной записи, вполне правомерен. Сейчас мы получим 
на него утвердительный ответ, опираясь на коротко изложенную 
выше теорию натуральных чисел.

Итак, пусть a – произвольно взятое натуральное число. 
Как мы знаем, это число представляет собой численность некото-
рого конечного множества A, причем природа элементов множест-
ва A совершенно не важна.

Нам будет удобно считать, что множество A представляет со-
бой совокупность счетных палочек (от этого наше рассмотрение 
не станет «более примитивным» и «менее строгим»).

Расположим теперь перед собой последовательность ящиков, 
под которыми будут (справа налево) подписаны их номера, начи-
ная с нулевого номера.

Мы можем считать, что с самого начала (на нулевом этапе) 
наши счетные палочки все лежали в ящике № 0; см. рис. 2.1.



46

Математика и информатика. Часть 2

Рис. 2.1

Начнем теперь связывать эти счетные палочки десятками и пе-
рекладывать связанные десятки в ящик № 1. (Нетрудно видеть, 
что фактически мы осуществляем деление по 10 в смысле деле-
ния «по содержанию»; подробности см. в [1].) После того, как этот 
(первый) этап завершится, в ящике № 0 останется не больше 9 
счетных палочек; мы обозначим число счетных палочек, остав-
шихся в ящике № 0, через a0. Затем перейдем к ящику № 1 и повто-
рим процедуру, связывая теперь десятки счетных палочек в сотни. 
После того, как этот (второй) этап закончится, число десятков счет-
ных палочек, оставшихся в ящике № 1, не превысит 9. Обозначим 
это число через a1. Затем перейдем к ящику № 2 и начнем связы-
вать сотни палочек в тысячи. И так далее. В силу того, что множе-
ство A наших счетных палочек конечно, процесс на каком-то этапе 
(для определенности – на k-ом этапе) закончится.

Рис. 2.2

Подсчитаем теперь количество a всех счетных палочек из мно-
жества A.

Из определения сложения сразу следует, что 
а = сумме численностей счетных палочек в каждом из ящиков. (2.6)

Осталось сосчитать численность счетных палочек в каждом от-
дельно взятом ящике.

Для определенности рассмотрим ситуацию, изображенную 
на рис. 2.2.
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В нулевом ящике, как мы видим, находится 6 палочек.
В ящике № 1 имеется 4 тонких связки по 10 штук в каждой. Та-

ким образом, общее количество палочек в этом ящике равно
10 + 10 + 10 + 10 = 10 ∙ 4 = 4 ∙ 10, 

(мы воспользовались определением сложения, определением 
умножения как кратного сложения и коммутативностью умноже-
ния).

В ящике № 2 имеется 3 толстых связки, каждая из которых 
содержит по 10 тонких связок. Выясним, прежде всего, какова 
численность одной толстой связки. Пользуясь определением сло-
жения, а также определением умножения как кратного сложения, 
получаем, что

численность толстой связки = 
= (численность тонкой связки) ∙ 10 = 10 ∙ 10.

откуда для численности ящика № 2 имеем:
10 ∙ 10 + 10 ∙ 10 + 10 ∙ 10 = (10 ∙ 10) ∙ 3 = 3 ∙ (10 ∙ 10)= 3 ∙ 102.
Аналогично вычисляем численность ящика № 3, в котором со-

держатся очень толстые связки:
10 ∙ 10 ∙ 10 + 10 ∙ 10 ∙ 10 = (10 ∙ 10 ∙ 10) ∙ 2 = 2 ∙ 103.

Таким образом, число счетных палочек на рис. 2.2 равно
2 ∙ 103 + 3 ∙ 102 + 4 ∙ 10 + 6 = 2346.

В общем случае, очевидно, мы приходим к равенству (2.4). Тем 
самым мы показали, что для произвольно взятого натурального чи-
сла a существует его десятичная запись.

2.3. СРАВНЕНИЕ НАТУРАЛЬНЫХ ЧИСЕЛ 
В ДЕСЯТИЧНОЙ ЗАПИСИ

Пусть имеются два числа, заданные своими десятичными запи-
сями: число a (см. (2.4)) и число
 b = bp10p + bp-110p-1 + … + b110 + b0. (2.7)

Не ограничивая общности, мы можем считать, что в (2.7) p = k. 
Действительно, всегда можно более короткую из двух записей 
(2.4), (2.7) дополнить спереди нулями.

Итак, сравниваем два числа:
a = ak10k + ak – 110k –1

 + … + a110 + a0;
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 b = bk10k + bk – 110k – 1 + … + b110 + b0. (2.8)
Начнем теперь сравнивать коэффициенты при одинаковых сте-

пенях десятки, начиная со старших разрядов и продвигаясь слева 
направо (в сторону младших разрядов).

Пусть, например, 
 ak = bk, ak – 1 = bk – 1, …, as + 1 = bs + 1, as > bs,  (2.9)

т.е. впервые, при движении в сторону младших разрядов, раз-
рядные слагаемые чисел a и b оказались не равны в s-ом разряде, 
причем соответствующее разрядное слагаемое в записи числа a 
оказалось больше.

Покажем, что из (2.9) следует, что
 a > b. (2.10)

Для этого снова прибегнем к интерпретации чисел как числен-
ностей множеств счетных палочек.

Вначале рассмотрим число а. Обозначим через
Аk, Ak – 1, Ak – 2, …, As + 1, As, …, A1, A0

множества счетных палочек, оказавшихся в ящиках после 
завершения процедуры, описанной в п. 2.2. Таким образом, 
имеем:
 Ak Ak – 1  As + 1 As  A1 A0 
 |____| |____|  … |____| |____| … |____| |____| (2.11)
 k k – 1  s + 1 s  1 0 

Аналогично будем интерпретировать число b как численность 
множества B счетных палочек, с которыми проведем ту же про-
цедуру, что и с палочками из множества A.

Обозначим через
Вk, Bk – 1, Bk – 2, …, Bs + 1, Bs, …, B1, B0

множества счетных палочек, оказавшихся в соответствующих 
ящиках после завершения упомянутой процедуры. Таким образом, 
имеем:
 Вk Вk – 1  Вs + 1 Вs  В1 В0 
 |____| |____| … |____| |____| … |____| |____| (2.12)
 k k – 1  s + 1 s  1 0 

Начиная с этого момента, ящики, в которых рассортировано 
множество A, будем называть «верхними», а аналогичные им ящи-
ки, по которым разложено множество B, – «нижними».
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Учитывая соотношения (2.9), развяжем в множестве As одну 
связку, содержащую 10s счетных палочек, и превратим эту связку 
в 10 связок, содержащих по 10s-1 счетных палочек. Все эти 10 свя-
зок перенесем в (верхний) ящик с номером s – 1. В (верхнем) ящи-
ке с номером s – 1 проделаем аналогичную процедуру: развяжем 
одну связку, содержащую 10s – 1 счетных палочек, и превратим 
ее в 10 связок по 10s – 2 счетных палочек в каждой. Затем все эти 
10 связок перенесем в (верхний) ящик с номером s – 2. Продолжая 
процесс, без труда получим, что
1) в каждом верхнем ящике не меньше счетных палочек, чем 

в соответствующем нижнем ящике (т.е. в нижнем ящике с тем 
же номером);

2) в верхнем ящике с номером 0 не меньше десяти счетных пало-
чек, в то время как в нижнем ящике с тем же номером счетных 
палочек не больше девяти.
В результате заключаем, что численность множества A строго 

больше численности множества B, т.е. (2.10) установлено.

2.4. ЕДИНСТВЕННОСТЬ ДЕСЯТИЧНОЙ ЗАПИСИ 
НАТУРАЛЬНОГО ЧИСЛА

Тот факт, что натуральное число может быть представлено 
в десятичной записи единственным образом, легко доказывает-
ся от противного. Действительно, предположим, что некоторое 
натуральное число a может быть представлено в десятичном 
виде двумя различными способами. Тогда в силу результатов 
предыдущего пункта мы, очевидно, должны были бы заклю-
чить, что a > a (или, что то же самое, что a < a). Однако это 
противоречит свойствам отношения «меньше» (см. по этому по-
воду, например, [1]).

2.5. АЛГОРИТМ СЛОЖЕНИЯ СТОЛБИКОМ 
(ОБОСНОВАНИЕ «С ОПОРОЙ НА МНОЖЕСТВА»)

Теперь мы, наконец, подошли к цели всего нашего изложения – 
обоснованию важнейших арифметических алгоритмов.
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Начнем с алгоритма сложения столбиком, обоснование которо-
го проведем «с опорой на множества» на конкретном примере.

Пусть требуется вычислить сумму 247 + 365. Имеем, пользуясь 
алгоритмом сложения столбиком:

   

(2.13)

Для обоснования (2.13) вспомним определение сложения нату-
ральных чисел. Рассмотрим два непересекающихся множества, со-
стоящих из счетных палочек: множество A, принадлежащее классу 
247, и множество B, принадлежащее классу 365. Суммой классов 
247 и 365 будет класс, содержащий A  B. Численность множест-
ва A  В (т.е. класс, которому принадлежит это множество) никак 
не зависит от того, наделили мы множества A и B какой-нибудь 
внутренней структурой или нет. Поэтому мы имеем полное право 
считать, что счетные палочки в множествах A и B связаны десят-
ками, а десятки связаны тоже по десять штук (так что получились 
сотни, состоящие из связанных десятков); см. рис. 2.3.

Рис. 2.3



51

Глава 2. Десятичная система счисления  и арифметические алгоритмы с точки зрения теории множеств

Итак, множество A  В мы расположили в трех нижних ящиках, 
изображенных на рис. 2.3. Рассмотрим теперь (в полном соответ-
ствии с алгоритмом сложения столбиком) счетные палочки в пра-
вом нижнем ящике; см. рис. 2.3.

Этих палочек, как мы видим, ровно двенадцать штук; свяжем 10 
из них и перенесем получившуюся связку в средний нижний ящик. 
Таких связок в среднем нижнем ящике окажется тогда одиннад-
цать штук. В полном соответствии с алгоритмом сложения столби-
ком, свяжем 10 таких связок в одну сотню и перенесем получен-
ную толстую связку в левый нижний ящик.

В результате множество A  В окажется рассортированным 
по ящикам так, как это показано на рис. 2.4.

Рис. 2.4

(Подчеркнем, что при процедурах связывания палочек и перено-
са полученных связок из одного ящика в другой численность мно-
жества A  B никак не менялась.)

Итак, из рис. 2.4 очевидно, что n(A  B) = 612.
Тем самым обоснование правила сложения столбиком в нашем 

конкретном примере завершено. При этом все наши действия со 
счетными палочками фактически представляли собой «опредме-
чивание» шагов алгоритма (2.13).

Нетрудно видеть также, что предложенный подход с тем же 
успехом работает в общем случае.

Замечание. Подчеркнем, что никакими свойствами арифме-
тической операции сложения мы в проведенном обосновании 
не пользовались.

Замечание. Предложенный подход к обоснованию алгорит-
ма сложения столбиком очевидным образом работает не только 
в случае  десятичной системы счисления, но и в случае любой 
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p-ичной . Для остальных арифметических алгоритмов ситуация 
аналогична.

2.6. АЛГОРИТМ СЛОЖЕНИЯ СТОЛБИКОМ 
(АРИФМЕТИЧЕСКОЕ ОБОСНОВАНИЕ)

Попробуем теперь обосновать (2.13), опираясь исключительно 
на арифметические законы.

Имеем:
247 + 365 = (2 ∙ 102 + 4 ∙ 10 + 7) + (3 ∙ 102 + 6 ∙ 10 + 5) =
= [(2 ∙ 102 + 4 ∙ 10) + (3 ∙ 102 + 6 ∙ 10)] + (7 + 5) =
= [(2 ∙ 102 + 4 ∙ 10) + (3 ∙ 102 + 6 ∙ 10)] + (1 ∙ 10 + 2)) = 
= {[(2 ∙ 102 + 4 ∙ 10) + (3 ∙ 102 + 6 ∙ 10)] + 1 ∙ 10} + 2 = 
= {(2 ∙ 102 + 3 ∙ 102) + [(4 ∙ 10 + 6 ∙ 10) + 1 ∙ 10]} + 2 = 
= {(2 ∙ 102 + 3 ∙ 102) + [(4 + 6) ∙ 10) + 1 ∙ 10]} + 2 = 
= {(2 ∙ 102 + 3 ∙ 102) + [1 ∙ 102 + 1 ∙ 10]} + 2 = 
= {(2 + 3 ∙ 102 + [1 ∙ 102 + 1 ∙ 10]} + 2 = 
= {5 ∙ 102 + [1 ∙ 102 + 1 ∙ 10]} + 2 = 
= {(5 + 1) ∙ 102 + 1 ∙ 10} + 2 = 
= 6 ∙ 102 + 1 ∙ 10 + 2 = 
= 612.
В ходе проведенных преобразований мы пользовались ас-

социативностью и коммутативностью сложения, дистрибутив-
ностью умножения относительно сложения, а также таблицей 
сложения однозначных чисел и правилом записи чисел в деся-
тичной системе.

Нетрудно заметить, однако, что арифметическое обоснование 
(в отличие от обоснования «с опорой на множества») лишь при-
близительно имитирует логику алгоритма сложения столбиком. 
Действительно, этот алгоритм большинством учеников восприни-
мается как естественный, но ни о какой дистрибутивности умно-
жения относительно сложения при естественном восприятии этого 
алгоритма речи не идет. Иными словами, теоретико-множествен-
ное обоснование упомянутого алгоритма обладает, на наш взгляд, 
значительными преимуществами.
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2.7. АЛГОРИТМ ВЫЧИТАНИЯ СТОЛБИКОМ 
(ОБОСНОВАНИЕ «С ОПОРОЙ НА МНОЖЕСТВА»)

Как и выше, мы ограничимся рассмотрением конкретного при-
мера.

Пусть требуется вычислить разность 612–365. Имеем, пользу-
ясь алгоритмом вычитания столбиком:

   

(2.15)

Мы будем действовать примерно так же, как в п. 2.5, привнеся 
в процедуру некоторые незначительные отличия. Итак, рассмо-
трим множество C такое, что n(C) = 612, и не пересекающееся 
с ним множество B1 такое, что n(B1) = 365. Оба множества будем 
считать состоящими из счетных палочек и структурированными 
описанным выше образом. (Единичные палочки связаны в десят-
ки, десятки десятков связаны в сотни; все связки разложены в со-
ответствующие ящики; см. рис. 2.5.)

Рис. 2.5

Наша ближайшая цель – выделить в C подмножество, равномощ-
ное множеству B1, причем сделать это таким образом, чтобы заодно 
стала ясна теоретико-множественная основа алгоритма (2.15). Со-
вершенно очевидно, что нужно взять одну толстую связку из лево-
го верхнего ящика, изображенного на рис. 2.5, перенести в средний  
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верхний ящик, развязать на тонкие связки (десятки) и одну из тон-
ких связок перенести в правый верхний ящик и там развязать.
Результат изображен на рис. 2.6. (Очевидно, что описанная 
процедура  никак не повлияла на численность множества C.)

Рис. 2.6

Итак, численность множества C \ B = 247. Таким образом, вы-
численная в строгом соответствии с определением вычитания раз-
ность 612–365 совпала со значением, вычисленным при помощи 
алгоритма вычитания столбиком. При этом мы фактически дали 
теоретико-множественное обоснование упомянутого алгоритма 
в рассмотренном примере. Перенос наших рассмотрений на об-
щий случай не составляет труда.

Замечание. Арифметическое обоснование алгоритма вычита-
ния столбиком оказывается еще более громоздким, чем аналогич-
ная процедура для операции сложения. Рассмотрим пример:

Вот как выглядит арифметическое обоснование алгоритма вы-
читания столбиком на этом простом примере:

247 – 149 = (2 ∙ 102 + 4 ∙ 10 + 7) – (1 ∙ 102 + 4 ∙ 10 + 9) = 
= [2 ∙ 102 + (3 + 1) ∙ 10 + 7] – [1 ∙ 102 + 4 ∙ 10 + 9] = 
= [2 ∙ 102 + 3 ∙ 10 + 1 ∙ 10 + 7] – [1 ∙ 102 + 4 ∙ 10 + 9] = 
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= [(2 ∙ 102 + 3 ∙ 10) + (1 ∙ 10 + 7)] – [(1 ∙ 102 + 4 ∙ 10) + 9] = 
= [(2 ∙ 102 + 3 ∙ 10) + (1 ∙ 10 + 7)] – [9 + (1 ∙ 102 + 4 ∙ 10)] = 
= [(2 ∙ 102 + 3 ∙ 10) + (1 ∙ 10 + 7)] – 9 – (1 ∙ 102 + 4 ∙ 10) = 
= [(2 ∙ 102 + 3 ∙ 10) + ((1 ∙ 10 + 7) – 9)] – (1 ∙ 102 + 4 ∙ 10) = 
= [(2 ∙ 102 + 3 ∙ 10) + 8] – (1 ∙ 102 + 4 ∙ 10) = 
= [(2 ∙ 102 + 3 ∙ 10) – (1 ∙ 102 + 4 ∙ 10)] + 8 = 
= [(1 + 1) ∙ 102 + 3 ∙ 10)) – (1 ∙ 102 + 4 ∙ 10)] + 8 = 
= [1 ∙ 102 + (1 ∙ 10 + 3) ∙ 10)) – (4 ∙ 10 + 1 ∙ 102)] + 8 = 
= [1 ∙ 102 + (1 ∙ 10 + 3) ∙ 10)) – ( ∙ 102 + 4 ∙ 10)] + 8 = 
= [1 ∙ 102 + (1 ∙ 10 + 3) ∙ 10)) – 4 ∙ 10 – 1 ∙ 102 ] + 8 = 
= [1 ∙ 102 + {(1 ∙ 10 + 3) ∙ 10 – 4 ∙ 10} – 1 ∙ 102 ] + 8 = 
= [{1 ∙ 102 + (13 – 4) ∙ 10} – 1 ∙ 102 ] + 8 = 
= [{1 ∙ 102 + 9 ∙ 10} – 1 ∙ 102 ] + 8 = 9 ∙ 10 + 8 = 98.

2.8. ОБОСНОВАНИЕ АЛГОРИТМА УМНОЖЕНИЯ 
СТОЛБИКОМ

2.8.1. Обоснование алгоритма умножения многозначного числа 
на однозначное

Теоретико-множественное обоснование этого алгоритма по су-
ществу ничем не отличается от теоретико-множественного обо-
снования алгоритма сложения столбиком (незначительное отличие 
заключается в использовании таблицы умножения в качестве вспо-
могательного средства).

Рассмотрим пример:

   
(2.16)

Приведем обоснование процедуры (2.16) «с опорой на множе-
ства». Из определения умножения следует (см. (7.3)), что 

247 ∙ 3 = n(A  B  C), 
где множества A, B, C попарно не пересекаются и

n(A) = n(B) = n(C) = 247.
Выберем в качестве множеств A, B, C совокупности счетных 

палочек, соответствующим образом связанных в десятки и сотни. 
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Тогда объединение A  B  C, очевидно, будет иметь вид, представ-
ленный на рис. 2.7.

Рис. 2.7

Применяя стандартную процедуру связывания счетных пало-
чек десятками и сотнями (десятками десятков) и перекладывая 
их в соответствующие ящики, легко получаем, что объединение 
множеств A, B, C может быть представлено в виде, изображенном 
на рис. 2.8. Итак, мы получили, что

n(A  B  C) = 741, 
подтвердив тем самым результат из (2.16). Более того, наши 

предметные действия со счетными палочками фактически по-
вторяли шаг за шагом алгоритм, использованный в (2.16). Тем 
самым этот алгоритм получил свое теоретико-множественное 
объяснение.

Переход от разобранного выше примера к общему случаю 
не составляет труда.

Замечание. Приведенный выше подход вовсе не будет громозд-
ким, если позволить себе при связывании и перекладывании счет-
ных палочек пользоваться таблицей умножения и таблицей сложе-
ния однозначных чисел.
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Рис. 2.8

Замечание. Что касается арифметического обоснования ал-
горитма (2.16), то оно опирается на коммутативность и ассоциа-
тивность сложения, на коммутативность и ассоциативность ум-
ножения, а также на дистрибутивность умножения относительно 
сложения (и, конечно, на таблицу умножения). Приведем соответ-
ствующие выкладки:

247 ∙ 3 = (2 ∙ 102 + 4 ∙ 10 + 7) ∙ 3 = 
= (2 ∙ 102 + 4 ∙ 10) ∙ 3 + 7 ∙ 3 = 
= (2 ∙ 102 + 4 ∙ 10) ∙ 3 + (2 ∙ 10 + 1) = 
= [(2 ∙ 102 + 4 ∙ 10) ∙ 3 + 2 ∙ 10] + 1 = 
= {(2 ∙ 102) ∙ 3 + [(4 ∙ 10) ∙ 3 + 2 ∙ 10]} + 1 = 
= {(2 ∙ 102) ∙ 3 + [4 ∙ (10 ∙ 3) + 2 ∙ 10]} + 1 = 
= {(2 ∙ 102) ∙ 3 + [4 ∙ (3 ∙ 10) + 2 ∙ 10]} + 1 = 
= {(2 ∙ 102) ∙ 3 + [(4 ∙ 3) ∙ 10 + 2 ∙ 10]} + 1 = 
= {(2 ∙ 102) ∙ 3 + [(1 ∙ 10 + 2) ∙ 10 + 2 ∙ 10]} + 1 = 
= {(2 ∙ 102) ∙ 3 + [(1 ∙ 10 + 2) ∙ 10 + 2 ∙ 10]} + 1 = 
= {(2 ∙ 102) ∙ 3 + [(1 ∙ 10 ∙ 10 + 2 ∙ 10) + 2 ∙ 10]} + 1 = 
= {(2 ∙ 102) ∙ 3 + [1 ∙ 10 ∙ 10 + (2 ∙ 10 + 2 ∙ 10)]} + 1 = 
= {(2 ∙ 102) ∙ 3 + [1 ∙ 10 ∙ 10 + (2 + 2) ∙ 10)]} + 1 = 



58

Математика и информатика. Часть 2

= {(2 ∙ 102) ∙ 3 + [1 ∙ 102 + 4 ∙ 10]} + 1 = 
= {[(2 ∙ 102) ∙ 3 + 1 ∙ 102] + 4 ∙ 10} + 1 = 
= {[2 ∙ (102 ∙ 3) + 1 ∙ 102] + 4 ∙ 10} + 1 = 
= {[2 ∙ (3 ∙ 102) + 1 ∙ 102] + 4 ∙ 10} + 1 = 
= {[(2 ∙ 3) ∙ 102 + 1 ∙ 102] + 4 ∙ 10} + 1 = 
= {[6 ∙ 102 + 1 ∙ 102] + 4 ∙ 10} + 1 = 
= {(6 + 1) ∙ 102 + 4 ∙ 10} + 1 = 
= {7 ∙ 102 + 4 ∙ 10} + 1 = 741.

2.8.2. Обоснование алгоритма умножения многозначного числа 
на 10s (s – натуральное)

Покажем, что умножение натурального числа на 10s сводится 
к приписыванию s нулей справа к краткой десятичной записи 
числа.

Это, кстати, единственный случай, когда арифметическое обо-
снование оказывается проще, чем обоснование «с опорой на мно-
жества».

Действительно, рассмотрим пример:
247 ∙ 103 = (2 ∙ 102 + 4 ∙ 10 + 7) ∙ 103 =

= 2 ∙ 105 + 4 ∙ 104 + 7 ∙ 103 = = 247 000.
Аналогично рассматривается общий случай.
Обоснование алгоритма умножения натурального числа на 10s 

«с опорой на множества» также возможно; при этом удобно снача-
ла ограничиться случаем, когда показатель степени s = 1, а затем 
перейти к случаю общего натурального s. Проведение соответст-
вующих выкладок мы оставляем читателю.

2.8.3. Обоснование алгоритма умножения многозначного числа 
на многозначное

фактически не требуется, поскольку в силу дистрибутивности 
умножения относительно сложения этот алгоритм сводится к уже 
разобранным ранее алгоритмам умножения многозначного числа 
на однозначное и на 10s, а также к алгоритму сложения многознач-
ных чисел.
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2.9. ОБОСНОВАНИЕ АЛГОРИТМА ДЕЛЕНИЯ УГОЛКОМ 
(«С ОПОРОЙ НА МНОЖЕСТВА»)

Мы ограничимся случаем деления многозначного числа на од-
нозначное и, как и выше, все наши рассмотрения будем проводить 
на конкретном примере.

Итак, пусть требуется поделить 217 на 5 (с остатком).
Имеем:

   

(2.17)

Перейдем теперь к обоснованию процедуры (2.17), а для это-
го вспомним определение деления как деления на равные части 
(с остатком).

Итак, рассмотрим множество A, n(A) = 217, состоящее из счет-
ных палочек, связанных десятками и десятками десятков (сотня-
ми); см. рис. 2.9.

Рис. 2.9

Теперь наша задача – разложить множество A по пяти ящикам 
поровну (с остатком).

Рассмотрим вначале сотни палочек; по пяти ящикам разложить 
их поровну, не развязывая, невозможно. Поэтому развяжем обе 
эти сотни, превратим их в 20 десятков; у нас окажется в результа-
те 21 десяток счетных палочек. Вот их мы и начнем раскладывать 
поровну по пяти ящикам, в каждом из которых нам будет удобно  
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иметь две полки – верхнюю для связанных десятками палочек, 
а нижнюю – для отдельных (одиночных) палочек. При этом, поль-
зуясь таблицей умножения, мы можем сразу раскладывать по 4 де-
сятка на верхние полки пяти двухъярусных ящиков.

Итак, мы получаем следующую картину (см. рис. 2.10).
Как видно из рис. 2.10, один связанный десяток счетных пало-

чек оказался лишним. Развяжем его и, присоединив к одиночным 
счетным палочкам, изображенным на рис. 17.1, начнем расклады-
вать поровну на нижние полки пяти двухъярусных ящиков. Поль-
зуясь, как и раньше, таблицей умножения, мы можем раскладывать 
сразу по 3 палочки на каждую из нижних полок.

Рис. 2.10

В результате получим распределение счетных палочек по пяти 
двухъярусным ящикам, изображенное на рис. 2.11, где видно, 
что две отдельные палочки оказались «лишними».

Рис. 2.11

В полном соответствии с определением деления с остатком, 
из рис. 2.11 следует, что

217 : 5 = 43 (ост. 2), 
т.е. мы подтвердили результат, полученный при помощи алго-

ритма деления уголком в (2.17). Более того, наши предметные дей-
ствия со счетными палочками фактически копировали про цедуру, 
использованную в (2.17). Тем самым обоснование алгоритма деле-
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ния уголком в рассматриваемом примере завершено. Переход к об-
щему случаю не составляет труда.

Замечание. Одним из несомненных достоинств алгоритма де-
ления уголком является то, что на каждом его шаге в неполном част-
ном появляется цифра, а не какое-либо число с двумя или большим 
количеством знаков. Приведем обоснование этой важной особен-
ности алгоритма деления уголком.

Итак, пусть требуется поделить уголком натуральное число a 
на некоторое натуральное D.

Обозначим через R остаток, возникающий на каком-либо шаге 
алгоритма; тогда обязательно
 R < D. (2.18)

Пусть, далее, r – очередная сносимая цифра делимого. Тогда 
на следующем шаге алгоритма нам нужно будет поделить (снова 
с остатком) число 10R + r на D. Покажем, что
 10R + r < 10D,  (2.19)

откуда и будет следовать требуемое утверждение.
Нетрудно видеть, однако, что (2.19) равносильно неравенству

 r < 10(D – R),  (2.20)
которое, очевидно, выполняется в силу (2.18) и того факта, что 

r – цифра.

2.10. ВЫВОДЫ

I. Алгоритм сложения столбиком. Теоретическое обоснова-
ние опирается:
1) на запись натурального числа в десятичной системе;
2) определение натурального числа как численности непустого 

конечного множества;
3) определение сложения в количественной теории (численность объ-

единения непересекающихся множеств = сумме численностей);
4) независимость численности множества от группировки его 

элементов;
5) таблицу сложения однозначных чисел.

II. Алгоритм вычитания столбиком. Теоретическое обосно-
вание опирается:
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1) на запись натурального числа в десятичной системе;
2) определение натурального числа как численности непустого 

конечного множества;
3) определение разности в количественной теории (численность 

разности множества и его подмножества = разности численно-
стей);

4) независимость численности множества от группировки его 
элементов;

5) таблицу сложения однозначных чисел.
III. Алгоритм умножения столбиком. Теоретическое обосно-

вание опирается:
1) на запись натурального числа в десятичной системе;
2) определение натурального числа как численности непустого 

конечного множества;
3) определение умножения в количественной теории как кратно-

го сложения;
4) независимость численности множества от группировки его 

элементов;
5) таблицу умножения и таблицу сложения однозначных чисел.

IV. Алгоритм деления уголком. Теоретическое обоснование 
опирается:
1) на запись натурального числа в десятичной системе;
2) определение натурального числа как численности непустого 

конечного множества;
3) определение деления на равные части в количественной тео-

рии; совпадение деления как операции, обратной умножению 
с операцией деления на равные части;

4) согласованность процедуры деления на равные части с муль-
типликативным принципом записи числа в десятичной систе-
ме (т.е. с соглашением о том, что единица каждого следующего 
разряда кратна единице предыдущего разряда);

5) таблицу умножения и таблицу сложения однозначных чисел.
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2.11. ДОБАВЛЕНИЕ. О ПЕРЕВОДЕ ОБЫКНОВЕННЫХ 
ДРОБЕЙ В ДЕСЯТИЧНЫЕ

Алгоритм деления «уголком», переводящий обыкновенные 
дроби в десятичные, общеизвестен. Однако наглядное объяснение 
тождества исходной обыкновенной дроби и ее десятичного пред-
ставления в учебниках обычно отсутствует. Здесь мы собираемся 
восполнить указанный пробел.

Итак, рассмотрим пример на деление 217 : 6. Теперь, в отли-
чие от п. 2.9, мы не ограничимся получением неполного част-
ного и остатка, а неограниченно продолжим процедуру деления 
уголком.

В результате остается некоторая неясность: почему обыкно-
венная неправильная дробь  и полученная в (2.21) десятичная 
запись  36,166... – это одно и то же?

Будем вначале действовать, как в п. 2.9. Рассмотрим множе-
ство A, состоящее из 217 счетных палочек, связанных в десятки 
и сотни, и постараемся разложить их поровну в шесть одинаковых 
корзинок (в каждой из которых имеются две полки). Вначале раз-
вяжем сотни и разложим поровну (по 3 десятка) на вторые (счи-
тая снизу вверх) полки корзинок; при этом три десятка счетных 
палочек окажутся «лишними». Развяжем эти «лишние» десятки, 
присоединим к ним оставшиеся семь одиночных палочек и разло-
жим поровну (по 6 штук) на первые полки корзинок; при этом одна 
счетная палочка окажется «лишней» (см. рис. 2.12).
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Рис. 2.12

Однако на этот раз (в отличие от наших действий в п. 2.9) 
мы не остановимся, согласившись с существованием «остаточного 
множества», состоящего из «лишней» счетной палочки, а продол-
жим нашу процедуру. С этой целью под каждой из шести корзинок 
устроим ведущую вниз последовательность нижних полок, кото-
рые будем нумеровать последовательно, считая теперь сверху вниз 
(первая нижняя полка, вторая нижняя полка и т.д.); см. рис. 2.13.

Рис. 2.13
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Рис. 2.14

Дальнейшие наши действия понятны из рис. 2.13 и 2.14. «Лиш-
нюю» палочку мы разламываем на 10 одинаковых частей и эти 
десятые доли распределяем поровну (по одной штуке) на первые 
нижние полки; при этом 4 десятых доли окажутся «лишними» – 
их невозможно разложить поровну по шести вторым нижним пол-
кам. Поэтому разламываем каждую из этих десятых долей еще раз 
на 10 частей, получаем 40 сотых долей, которые распределяем по-
ровну (по шесть штук) по вторым нижним полкам; при этом 4 со-
тых доли остаются «лишними». Их снова разламываем и т.д.

Теперь становится геометрически очевидно, что содержимое 
любой из корзин (т.е. совокупность палочек на верхних полках 
и долей палочек на нижних полках) представляет собой в точности 
одну шестую от исходного количества палочек (т.е. от 217).

Итак, равенство

   = 36,166... (2.22)
получило свое геометрическое истолкование.
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СИСТЕМЫ СЧИСЛЕНИЯ

В предыдущих главах мы познакомили вас с количественной 
теорией целых неотрицательных чисел, которая была создана 
(на основе теории множеств) в конце XIX века и с теоретико-мно-
жественной основой хорошо известных нам алгоритмов арифме-
тических действий в десятичной системе счисления. При этом 
мы вполне естественно считали, что общее представление 
об устройстве десятичной системы счисления и действующих 
в ней вычислительных арифметических алгоритмах у наших чита-
телей имеется. Но изучение систем счисления заслуживает значи-
тельно большего внимания, так как знание истории возникновения 
и развития этого важнейшего арифметического понятия позволит 
будущему учителю уверенно ориентироваться как в целом ряде 
вопросов начального курса математики, так и в большом масси-
ве задач занимательного и олимпиадного характера, идея которых 
базируется на принципах и особенностях той или иной системы 
счисления. Именно поэтому мы и включили в содержание нашей 
книги данную главу.

3.1. ИЗ ИСТОРИИ ВОЗНИКНОВЕНИЯ 
СИСТЕМ СЧИСЛЕНИЯ

Одним из главных достижений количественной теории стало 
появление строгого определения целого неотрицательного числа 
(т.е. натурального числа или числа «ноль») с количественных по-
зиций. До этого момента такого определения в математике не су-
ществовало, хотя само понятие натурального числа начало форми-
роваться в сознании древних людей на рубеже позднего палеолита 
и неолита, т.е. около 10 тыс. лет тому назад (число «ноль» как поня-
тие стало формироваться гораздо позднее). Во всяком случае, так 
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считают авторитетные ученые, занимающиеся вопросами истории 
математики [8, 10]. При этом с высокой степенью вероятности 
можно предположить, что первым натуральным числом, изобре-
тенным человеком, было число «один», что вполне естественно, 
так как первый шаг количественной дифференциации в человече-
ском сознании проходил между понятиями «один» («единствен-
ность») и «много» («множественность»), где «много» означает 
все, что больше, чем «один» (этот факт косвенно подтверж дается 
существованием практически во всех современных языках таких 
понятий (грамматических категорий), как «единственное число» 
и «множественное число»). Другие варианты на этой ступени 
формирования количественных представлений вряд ли возмож-
ны. Более того, на этой ступени мы даже не можем говорить 
о формировании количественных представлений, так как «один» 
и «много» – это скорее качественные характеристики типа «белое» 
и «черное». Этот этап можно считать этапом зарождения количест-
венных представлений, которые еще явно не проявились.

На следующем этапе (это можно предположить с большой веро-
ятностью), должно было появиться число «два» как самостоятель-
ная качественная характеристика пары предметов. Благо для этого 
существовало много предпосылок, так как с «парными» предме-
тами человек сталкивался постоянно (пара рук, пара ног, пара глаз 
и т.д.). И эту мысль можно подтвердить, обратившись к особенно-
стям некоторых языков, прежде всего, древних. Так в санскрите, 
древнегреческом, старославянском языках, кроме единственного 
и множественного числа, существовало еще и двойственное число. 
Это означало, что если какое-то слово находится в форме двойст-
венного числа, то без употребления соответствующего числитель-
ного всем понятно, что речь идет о двух предметах. Интересно, 
что некоторые современные языки (например, арабский, словен-
ский, исландский, иврит) сохранили в своей системе двойствен-
ное число. Но пара состоит из одного и еще одного. А вот такая 
трактовка – это уже количественный взгляд на число «два». А если 
к двум предметам добавить еще один, то появляется «новое» коли-
чество предметов, а именно «три». Вот мы и вышли на «прямую 
дорогу» развития количественных представлений, которая неми-
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нуемо должна была вывести древних людей на формирование по-
нятия натурального числа как некоторого количества «единиц». 
В дальнейшем этот путь обязательно должен был привести и при-
вел к формированию понятия натурального ряда чисел, где на пер-
вый план уже выходит порядковая сущность натурального числа.

Но сейчас нас интересует не вопрос возникновения натураль-
ных чисел, а другой (хотя и напрямую с ним связанный) вопрос: 
когда люди научились называть и записывать натуральные числа 
и как они это делали? Ответ на вторую часть этого вопроса выво-
дит нас на рассмотрение такого понятия как система счисления.

Определение. Системой счисления (письменной нумерации) 
называется совокупность приемов представления (записи) нату-
ральных чисел.

Замечание. Некоторые авторы к понятию системы счисления 
относят еще и правила устной нумерации, а также алгоритмы вы-
полнения арифметических действий над натуральными числами. 
Мы этого делать не будем по следующим причинам. Во-первых, 
сохранившаяся устная нумерация, как правило, имеет много не-
совпадений с соответствующей письменной нумерацией, а су-
дить о древней устной нумерации очень сложно, так как в отли-
чие от письменной, которая хоть как-то зафиксирована в древних 
памятниках, сохранившихся до наших дней, устная таким важным 
качеством не обладает (возможность записывать и воспроизводить 
устную речь человечество получило относительно недавно). Ко-
нечно, анализируя речь первобытных племен, которые сохранились 
в труднодоступных местах экваториальной Африки или Южной 
Америки, можно извлечь интересную информацию по этой пробле-
ме, но ее очень трудно экстраполировать на системы счисления, изо-
бретенные другими народами (цивилизациями). При этом разговор 
об особенностях устной нумерации в разных языках очень важен 
и интересен (в языке очень часто сохраняются слова, которые не со-
ответствуют действующей письменной нумерации, а появились 
и использовались в другой (более древней) системе счисления). По-
этому мы обязательно будем об этом вести речь, но сделаем это чуть 
позже, в отдельном параграфе данной главы. Во-вторых, алгоритмы 
арифметических действий – это уже надстройка над нумерацией , 
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которая  без них может прекрасно существовать, и поэтому нет смы-
сла изначально включать алгоритмы арифметических действий 
в определение понятия системы счисления.

Если вернуться к первой части поставленного выше вопроса, 
то возникновение письменной нумерации по времени не должно 
очень заметно отличаться от времени возникновением письмен-
ности у тех или иных народов. Если же к письменной нумерации 
относить, например, способ «записи» чисел с помощью зарубок 
на дереве или с помощью нанизанных ракушек, то такая «письмен-
ная» нумерация, очевидно, существенно старше, чем письменность, 
которая, по мнению историков, появилась у древних народов на ру-
беже V и IV тысячелетий до н.э.

Так с чего начинается возникновение системы счисления? Если 
вы заметили, то чуть выше мы уже ответили на этот вопрос. Си-
стема счисления начинается с введения особого знака для обозна-
чения числа «один».

Замечание. Мы специально не используем сейчас цифровые 
обозначения, чтобы подчеркнуть тот факт, что привычная нам де-
сятичная система не находится в особом положении, а является 
одной из многих систем счисления, которые были изобретены че-
ловечеством.

Итак, если мы научились записывать число «один» (зарубка, 
ракушка, камешек, черточка и т.д.), то другие натуральные числа 
можно записывать с помощью повторения этого знака (предмета) 
нужное количество раз. Из этой примитивной системы счисления 
берут свое начало все другие системы счисления. Поэтому мы ее 
можем назвать прасистемой для всех систем счисления. В ней 
есть только одно узловое число (т.е. число, для обозначения кото-
рого вводится специальный знак) – это число «один», а все дру-
гие числа (мы их будем называть алгоритмическими) получаются 
из узловых аддитивным способом (т.е. с помощью сложения уз-
ловых чисел). При этом насколько прасистема является простой 
и понятной, настолько же она громоздка и неудобна. Поэтому каж-
дый народ, перед которым стояла проблема записи чисел, пытался 
усовершенствовать прасистему, идя по пути создания все более 
удобных и компактных записей чисел.
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Один из возможных вариантов усовершенствования прасисте-
мы достаточно очевиден: нужно какую-то группу «единиц» обо-
значить новым знаком, т.е. ввести в систему новое узловое число. 
Выбор нового узлового числа (кроме числа «один») является очень 
важным, так как он связан с тем, какую группу единиц в данной 
системе счисления принимают за основание счета. Если эта группа 
состоит из «десяти» единиц, то счет ведется десятками, а система 
называется десятичной. Если эта группа состоит из «двенадцати» 
единиц, то счет ведется дюжинами, а система называется двенадца-
теричной. Так, в Древнем Египте кроме знака (иероглифа) для чи-
сла «один» были введены новые знаки (иероглифы) для обозначе-
ния чисел «десять», «сто», «тысяча» и т.д. (см. рис. 3.1), т.е. каждое 
следующее узловое число было в десять раз больше предыдущего. 
Это классический пример десятичной системы. При этом алгорит-
мические числа у египтян конструировались только на аддитивной 
основе [8].

Рис. 3.1. Нумерация Древнего Египта

В Древнем Риме на роль узловых чисел были «назначены» 
следующие числа: «один», «пять», «десять», «пятьдесят», «сто», 
«пятьсот», «тысяча», а алгоритмические числа стали получать 
не только аддитивно, но и субтрактивно (на основе вычитания). 
Эту систему нельзя назвать десятичной в полном смысле этого 
термина. Она скорее десятично-пятеричная (см. рис. 3.2).

Рис. 3.2. Нумерация Древнего Рима
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В Древнем Вавилоне стали использовать только два знака: «про-
стой» клин для обозначения числа «один» и «косой» клин для обо-
значения числа «десять». При этом вавилоняне не стали ничего 
менять в аддитивном способе записи алгоритмических чисел, зато 
догадались придавать одному и тому же знаку разные числовые 
значения в зависимости от того места (позиции), которое занимает 
данный знак в записи числа. А вот считали они не столько десят-
ками, сколько «шестидесятками», поэтому их систему считают ше-
стидесятеричной (см. рис. 3.3).

Рис. 3.3. Нумерация Древнего Вавилона

Древние греки с III века до н.э. стали массово использовать так 
называемую ионийскую систему счисления (она вытеснила более 
древнюю аттическую систему), в которой для обозначения узло-
вых чисел служили буквы. При этом узловых чисел у них было су-
щественно больше, чем у египтян или римлян (даже всех букв дей-
ствующего алфавита им не хватило) (см. рис. 3.4). Древняя Русь, 
благодаря тесным связям с Византией, переняла у Древней Греции 
алфавитный способ записи чисел [8].

Рис. 3.4. Нумерация Древней Греции (ионийская)
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Каждая из существовавших когда-то или существующих сейчас 
систем счисления интересна по-своему, и чуть позже мы проана-
лизируем некоторые из них более подробно. Но все они могут быть 
разделены на две основные группы. Те народы, которые пошли 
по тому же пути, что и жители Древнего Египта, стали создавать 
системы счисления, получившие впоследствии название непози-
ционных. Кто же выбрал путь, реализованный (пусть и не в завер-
шенном виде) в Древнем Вавилоне, стали создавать позиционные 
системы счисления. Со временем человечеству стало понятно, 
что второй путь имеет существенное преимущество над первым. 
Мы обязательно скажем о том, в чем оно заключается, но чуть поз-
же. Пока предлагаем читателям поразмышлять на эту тему и сде-
лать свои предположения.

3.2. НЕПОЗИЦИОННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ

Как мы уже сказали выше, к непозиционным системам счи-
сления мы относим те, в которых позиция знака (цифры) в записи  
числа не используется для передачи информации об этом числе. 
В таких системах знаки, участвующие в записи данного числа, 
либо занимают заранее заданную позицию, которую изменять 
нельзя, либо позиция вообще может быть произвольной, а ее из-
менение не меняет записанного числа. В качестве примера «кано-
нической» непозиционной системы счисления можно привести 
систему записи чисел, которая применялась в Древнем Египте 
в IV–II тысячелетии до н.э. В этой системе число представля-
лось как сумма узловых чисел при условии, что количество этих 
узловых чисел является минимальным из всех возможных. На-
пример, если нужно было записать число «сто двадцать три», его 
представляли в виде суммы шести узловых чисел: «сто» + «де-
сять» + «десять» + «один» + «один» + «один». Узловые числа за-
писывались в порядке невозрастания слева направо. Если теперь 
каждое слагаемое обозначить соответствующим иероглифом, 
а знаки + опустить, то получится запись данного числа в системе 
счисления Древнего Египта. Аналогично записывались и другие 
числа (см. рис. 3.5).
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Рис. 3.5. Примеры записи чисел в Древнем Египте

Другим примером непозиционной системы счисления являет-
ся система, применяемая в Древней Греции. Эта система носила 
алфавитный характер, т.е. в роли цифр выступали буквы древне-
греческого алфавита. Эту идею греки сначала реализовали в атти-
ческой системе счисления, которая существовала до III века до н.э. 
В этой системе узловыми числами были числа «один», «пять», 
«десять», «сто», «тысяча», «десять тысяч», которые обозначались 
соответственно первыми буквами слов, являющихся их названия-
ми, а алгоритмические числа строились по аддитивному способу. 
Особенностью этой системы было то, что использовались «проме-
жуточные» узловые числа («пятьдесят», «пятьсот», «пять тысяч», 
«пятьдесят тысяч»), для обозначения которых использовалась ком-
бинация знака для числа «пять» и знака, обозначающего соответ-
ствующее «основное» узловое число. Запись чисел в этой систе-
ме очень напоминает запись чисел римскими цифрами. Начиная 
с III века до н.э. в Древней Греции господствующей системой счи-
сления становится ионийская. Согласно этой системе узловыми 
числами становятся числа «один», «два», …, «девять», «десять», 
«двадцать», …, «девяносто», «сто», «двести», …, «девятьсот», т.е. 
всего 27 чисел, которые обозначались соответствующими буквами 
действующего тогда греческого алфавита (24 буквы) и еще тре-
мя устаревшими буквами. С помощью этих узловых чисел очень 
просто записываются натуральные числа от «одного» до «девяти-
сот девяносто девяти». Для обозначения больших чисел использо-
вались те же буквы, но снабженные дополнительными символами. 
Эта идея в чем-то близка идее использования позиции в записи 
для передачи нужной информации. Ионийской системой Древней 
Греции воспользовались в свое время создатели системы счисле-
ния Древней Руси, о которой речь пойдет в следующем пункте.



75

Глава 3. Системы счисления

Рассмотрим еще один пример непозиционной системы счи-
сления. Речь пойдет о системе счисления Древнего Рима. В ней 
узловые числа были выбраны аналогично тому, как это было сде-
лано в аттической нумерации, т.е. имеются «основные» узловые 
числа: «один» (I), «десять» (X), «сто» (C), «тысяча» (M), а также 
«промежуточные» узловые числа: «пять» (V), «пятьдесят» (L), 
«пятьсот» (D), т.е. система является десятично-пятеричной. Эта 
система имеет две очень важные отличительные черты. Во-пер-
вых, она является единственной из древних систем счисления, 
которой мы продолжаем пользоваться и по сей день. Конечно, 
это использование осуществляется в очень специфических си-
туациях (нумерация глав в книге, написание юбилейных дат, 
цифры на циферблате часов и т.д.), но оно продолжает быть, 
и знать азы этой нумерации бывает нужно с практической точ-
ки зрения. Во-вторых, римская нумерация, по нашему мнению, 
не является непозиционной (как это обычно принято считать) 
в полном смысле этого термина, а занимает некоторое проме-
жуточное положение между непозиционными и позиционными 
системами счисления. Связано это с тем, что римляне догада-
лись использовать позицию в записи числа для передачи инфор-
мации об этом числе, но только не количественной (как это про-
исходит в позиционных системах счисления), а операционной, 
указывающей на выбор операции (сложение или вычитание) 
для построения алгоритмического числа. Например, VI = V + I, 
а IV = V – I. Этот пример показывает, что с помощью одних 
и тех же цифр (I и V) можно записать два разных числа («шесть» 
и «четыре»), достаточно лишь учитывать место (позицию) цифр 
в записи числа.

3.3. СИСТЕМА СЧИСЛЕНИЯ ДРЕВНЕЙ РУСИ

В то время как в странах Западной Европы пользовались рим-
ской системой счисления, в Древней Руси, находившейся, по-
добно другим славянским государствам, в тесном культурном 
и религиозном общении с Византией, получила распространение 
сходная с греческой алфавитная нумерация, в которой в качестве 
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узловых чисел были взяты числа: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 
40, 50, …, 90, 100, 200, 300, …, 800, 900. При этом каждое из ука-
занных двадцати семи чисел обозначалось своей буквой славян-
ского алфавита, следуя, как правило, алфавитному порядку.

Замечание. Мы рассматриваем поздний вариант древнерус-
ской нумерации, который базировался на «кириллице», введенной 
в IX веке. Нумерацию, основанную на «глаголице» мы затрагивать 
не будем.

Ниже представлена таблица, которая позволяет не только уз-
нать, как на письме обозначалось то или иное узловое число, 
но и как называется соответствующая буква (написание букв при-
ближено к современному виду).

Рис. 3.6. Нумерация Древней Руси

Алфавитный порядок при обозначении узловых чисел не всег-
да соблюдался. Этому есть свои объяснения. Так, число 2 обозна-
чалось не второй по порядку буквой «буки», а третьей – «веди», 
так как в греческом алфавите второе место занимает буква «бета» 
(византийская «вита»), а она по написанию и по звучанию соответ-
ствовала славянской букве «веди». Создатели древнерусской нуме-
рации решили сохранить это соответствие.

Число 9 обозначалось буквой «фита», которая находилась 
в конце славянского алфавита, но эта буква ассоциировалась с гре-
ческой буквой «тета», которая и обозначала число 9.

Число 90 обозначалось буквой «червь», что также нарушало 
алфавитный порядок. Причиной тому стал тот факт, что в гре-
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ческой нумерации это число обозначалось вышедшей из упо-
требления буквой «коппа», которую нужно было заменить «до-
полнительной» (по сравнению с греческим алфавитом) буквой 
славянского алфавита (этой буквой и стала буква «червь»), 
чтобы далее можно было сохранить алфавитное соответствие 
в обозначении чисел. Так, следующее узловое число (100) обо-
значалось в греческой системе буквой «ро», а в славянской – 
буквой «рцы», которые соответствуют друг другу и графиче-
ски, и фонетически.

Так как в славянском алфавите букв было больше двадцати 
семи, то некоторые из них не были задействованы в системе счи-
сления. Например, буква «буки», причину отсутствия которой 
в списке букв, используемых для обозначения узловых чисел, 
мы объяснили выше.

Замечание. Чтобы на письме букву не перепутать с цифрой, 
использовался особый знак, который назывался «титло» и ставил-
ся над первой цифрой записи числа или над всей записью числа. 
Как выглядел этот знак, можно увидеть на рис. 3.6.

С помощью данных узловых чисел и их комбинаций можно 
было записать любое число в пределах от 1 до 999. Алгорит-
мические числа строились на аддитивной основе. Так числа 
второго десятка записывались с помощью буквы «и», которая 
обозначала число 10 («десяток») и соответствующей буквы, 
которая обозначала число единиц. При этом сначала записы-
валась цифра единиц, а потом цифра, обозначающая десяток. 
Такое написание чисел второго десятка сохранилось в устной 
нумерации, которой мы пользуемся и по сей день. Так, число 
«двенадцать» записывалось как «веди-и», а число «девятнад-
цать» – как «фита-и». Что же касается других алгоритмиче-
ских чисел первой сотни, то для них порядок следования цифр, 
обозначающих число десятков и число единиц, был таким, ко-
торым мы пользуемся в современной десятичной системе счи-
сления, т.е. сначала записывалась цифра десятков, а потом – 
цифра единиц. Например, число «тридцать три» записывалось 
как «люди-глаголь», а число «восемьдесят пять» – как «покой-
есть» (см. рис. 3.7).
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Рис. 3.7. Примеры записи чисел в Древней Руси

Для обозначения чисел, начиная с числа «тысяча», применялись 
приемы, основанные, как и в греческой нумерации, на использова-
нии дополнительных символов. Так, если к цифре «аз» внизу сле-
ва добавлялся символ, похожий на перечеркнутый знак равенства, 
то это означало, что записано число «одна тысяча» (или просто 
«тысяча»), а не число «один» (см. рис. 3.8). Аналогично обстоит 
дело, если мы добавим этот значок к любой цифре первой группы 
(«группы единиц»). Например, «три тысячи» записывалось с по-
мощью присоединения этого знака к цифре «глаголь».

Рис. 3.8. Дополнительные знаки нумерации Древней Руси

Замечание. Значок, увеличивающий значение цифры в 1000 раз 
в особом случае можно было добавлять не только к цифрам группы 
единиц, но к другим цифрам. В этом случае используемая система 
называлась «великий счет». Такая система счета использовалась 
редко, в отличие от «малого счета», когда дополнительный значок 
можно было добавлять только к цифрам группы единиц.

Система «малого счета» позволяла расширить верхнюю грани-
цу записываемых чисел до числа 9999. Для обозначения больших 
чисел нужно было вводить новый дополнительный значок. Таким 
значком стал «кружок», в который заключали цифру группы еди-
ниц, что увеличивало ее значение в 10 000 раз. Например, цифра «аз 
в кружочке» обозначала число «десять тысяч» (см. рис. 3.8), а цифра 
«добро в кружочке» – «сорок тысяч». С помощью рассмотренных 
двух дополнительных значков самым большим числом, которое 
можно записать в системе «малого счета», является число 99 999.
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Замечание. При «великом счете» дополнительный значок «кру-
жок» увеличивал цифру, которая в нем заключена, уже не в 10 000 
раз, а в 1 000 000 раз, так как верхняя граница «великого счета» с по-
мощью первого дополнительного значка достигает числа 999 999.

Далее история повторяется. Нужно только вводить новые до-
полнительные значки. Такими значками стали: «кружочек из то-
чек», «кружочек из лучиков», «кружочек из крестиков», «крышка 
в виде квадратной скобки». Смысл этих дополнительных значков 
описан в соответствующей таблице (см. рис. 3.8).

В этой же таблице мы можем прочитать и те названия, которые ис-
пользовались в старославянском языке для называния соответствую-
щих числительных. Так, числительное «тысяща» практически не от-
личается от современного числительного «тысяча», а числительное 
«тьма» обозначает «десять тысяч», т.е. такое большое число для жи-
телей Древней Руси, что оно не подлежит конкретному пересчету, 
а обозначает что-то очень большое по количеству. В этом контексте 
становится понятным смысл фразы «собралось тьма народу».

В непозиционных системах счисления проблема записи до-
статочно больших чисел решалась за счет введения новых цифр 
(либо принципиально новых знаков, либо дополнительных знач-
ков к «старым» цифрам) – это простейшее решение проблемы, 
но далеко не самое рациональное. В этом случае увеличивать спи-
сок знаков для записи чисел пришлось бы регулярно (по мере не-
обходимости). Через какое-то время он стал бы таким большим, 
что пользоваться им было бы очень затруднительно. Нужен был 
другой способ решения проблемы. И он был найден. В результа-
те возникла древнейшая позиционная система счисления. Причем 
случилось это приблизительно в тот же исторический период, ког-
да в Древнем Египте формировалась одна из первых десятичных 
непозиционных систем счисления.

3.4. ПОЗИЦИОННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ

В позиционных системах счисления кроме используемых зна-
ков (цифр) информация о числе «зашифрована» еще и в позиции 
каждого знака в записи. Причем в «настоящих» позиционных 
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системах  счисления позиция цифры несет в себе количественную 
информацию о данном числе, в отличие от систем, занимающих 
некоторое промежуточное положение, в которых позиция знаков 
несет информацию об операционном характере образования алго-
ритмических чисел. Римская нумерация как раз и является при-
мером такой «промежуточной» системы. Достаточно вспомнить, 
как римскими цифрами записываются, например, числа 9 и 11 
(9 = IX = X – I и 11 = XI = X + I), и станет понятно, что позиция 
цифр в записи играет важную роль, но не количественную, а опе-
рационную.

Одной из древнейших позиционных систем счисления являет-
ся система, существовавшая в Древнем Вавилоне. Основы этой 
системы восходят к шумерийско-аккадской эпохе на террито-
рии Месопотамии (IV тысячелетие до н.э.). Шумеры употребля-
ли в вычислениях систему, в основе которой лежало число 60, 
хотя в некоторых случаях пользовались и десятичной системой. 
Для записи чисел они пользовались двумя знаками: «простой» 
клин являлся обозначением числа 1, а знаком числа 10 был «ко-
сой» клин. Построение алгоритмических чисел осуществлялось 
на аддитивной основе. Например, чтобы написать число «пят-
надцать», нужно было выдавить один «косой» клин и пять «про-
стых» клиньев.

Замечание. Использование только двух знаков было продикто-
вано объективными причинами. В древней цивилизации Междуре-
чья писали на глиняных табличках, выдавливая на них палочками 
клиновидные знаки двух видов, используя оба конца специально 
заточенной палочки. Добиться большого разнообразия в знаках 
в этих условиях было практически невозможно, в отличие, на-
пример, от того разнообразия, которое сложилось в письменности 
соседней цивилизации Древнего Египта, так как египтяне писали 
на папирусе, и им значительно проще было фантазировать с кон-
фигурацией знаков (иероглифов).

Вначале для обозначения старших разрядов они пользовались 
знаками младших разрядов, которые записывались в увеличенном 
виде. Однако постепенно, с дальнейшим упрощением и установле-
нием однотипности письма, разница между крупными и мелкими 
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знаками стиралась и, в конце концов, остались лишь два указанных 
выше знака: «простой» клин и «косой» клин. Таким образом, тот 
факт, что различные узловые числа перестали записывать принци-
пиально различными символами (знаками), привел к возникнове-
нию позиционной системы, сыгравшей величайшую роль в разви-
тии человеческой культуры.

При помощи повторений только двух указанных знаков вави-
лоняне производили запись любого числа. Если говорить о числах 
в пределах от 1 до 59, то записывались они с помощью соответ-
ствующего числа «клиньев-десятков» и числа «клиньев-единиц». 
Например, запись числа 38 состояла из трех «косых» клиньев 
и восьми «простых» клиньев. Позднее вавилоняне, подобно егип-
тянам, стали группировать знаки, но не по четыре, а по три. Запись 
числа 59 приведена в соответствующей таблице (см. рис. 3.3).

А теперь о самом важном и интересном изобретении вавило-
нян. Для обозначения числа 60 они стали использовать один «про-
стой» клин, т.е. знак, который привычно применялся для обозна-
чения числа 1, а не шестикратное повторение «косого» клина. Вне 
контекста отличить записи числа 1 и числа 60 было невозможно, 
так как нельзя было определить, на каком месте (в какой позиции) 
стоит этот знак: на месте единиц или на месте шестидесятков. 
Но если говорить, например, о записи числа 65, то разночтений 
было меньше, хотя и в этом случае нельзя говорить о полной од-
нозначности трактовки записи числа (см. рис. 3.3).

Таким образом, эта система не была окончательно сформиро-
вана, так как без специального знака, обозначающего пропуск по-
зиции (разряда), нет однозначного прочтения чисел без уточнения 
их количественных границ из контекста. К сожалению, вавило-
няне не додумались до введения «нуля», хотя некий аналог нуля 
они в поздних текстах стали использовать. Это был знак, кото-
рый ставился в конце предложения (аналог современной точки), 
но обязательным и систематическим это нововведение не стало.

Несмотря на отмеченные недостатки, шестидесятеричная по-
зиционная система шумеров и вавилонян была очень выгодна 
для вычислений в отличие от непозиционных систем счисления. 
А деление часа на 60 минут и минуты на 60 секунд – это примеры 
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того, что мы унаследовали от этой древней цивилизации. И это да-
леко не единственные примеры.

Когда же человечество додумалось до систематического ис-
пользования «нуля» и кто это сделал? Это нам хорошо известно: 
сделали это индийские математики в VI–VII веках н.э. Именно 
они создали систему, в которой была полностью реализована 
идея позиционного способа записи чисел, в основание которо-
го было положено число 10. Для этого им понадобилось ввести 
девять цифр для обозначения первых девяти натуральных чисел 
и особый знак для обозначения пропуска позиции (разряда) – 
цифру «ноль». Используя цифру для обозначения числа «один» 
и знак пропуска разряда (цифру «ноль»), можно было записать 
основание системы счисления, т.е. число «десять». Именно изо-
бретение «нуля» и стало величайшим достижением индийских 
математиков, позволившим им создать такую систему счисления, 
в которой любое число может быть однозначно записано с по-
мощью использования всего десяти различных знаков (цифр), 
при условии, что знаки в записи можно повторять любое число 
раз. Другими словами, они создали позиционную десятичную 
систему счисления, которая со временем вытеснила все другие 
системы, превратившись в общепринятую мировую систему счи-
сления, хорошо знакомую всем нам.

В настоящее время достоверно известно, что в VII веке н.э. де-
сятичная система, основанная на использовании девяти «знача-
щих» цифр, позиционном принципе и особом знаке (знаке «ноль») 
для обозначения пропуска позиции (разряда), полностью сформи-
ровалась.

Уже в середине VII века сведения об индийской нумерации ста-
ли распространяться на Запад. В это время есть факты упоминания 
индийской системы в Сирии. В конце VIII века она становится из-
вестной в Багдаде. Арабские ученые быстро оценили достоинства 
новой системы. Подробное описание этой системы на арабском 
языке было сделано выдающимся среднеазиатским ученым ал-
Хорезми (Абу Абдаллы Мухаммеда ибн Муса ал-Хорезми ал-Мад-
жуси (около 780–850 гг.)). Сочинение ал-Хорезми по арифметике 
дошло до нас только в латинском переводе. Этот перевод восходит 
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к середине XII века. Благодаря этой книге в Европе детально по-
знакомились с индийской системой счисления, а к XIV веку она 
стала повсеместно использоваться в странах Западной Европы.

В России распространение десятичной системы счисления про-
изошло в эпоху царствования Петра I, а способствовала тому книга 
Л.Ф. Магницкого (1669–1739) «Арифметика, сиречь наука числи-
тельная», вышедшая в 1703 году на славянском языке. Все записи 
чисел и вычисления в ней производятся при помощи цифр индий-
ской нумерации, а также приводятся таблицы, которые позволяют 
сопоставлять записи чисел в древнерусской нумерации и в новой 
десятичной системе. Отметим, что для нумерации страниц книги 
используется алфавитная древнерусская система счисления. Ин-
тересен и такой факт. Л.Ф. Магницкий использовал совершенно 
однотипные названия для «круглых» чисел первой сотни: «десят», 
«двадесят», «тридесят», «четыредесят», «пятьдесят», «шестьде-
сят», «семьдесят», «восемьдесят», «девятьдесят». Мы можем срав-
нить эти названия с современными и понять, какие из них сохра-
нились, какие частично изменились, а какие совсем не прижились. 
Эта книга сыграла очень важную роль в развитии преподавания 
математики в России. «Арифметика» Магницкого – первый печат-
ный отечественный учебник математики!

Мы познакомили вас с краткой историей возникновения и распро-
странения десятичной позиционной системы счисления. Интересные 
особенности ее устройства были описаны в предыдущей главе.

3.5. НЕДЕСЯТИЧНЫЕ ПОЗИЦИОННЫЕ СИСТЕМЫ 
СЧИСЛЕНИЯ

Прежде всего, еще раз обратим внимание на то, что в силу необ-
ходимости при изучении недесятичных позиционных систем счи-
сления мы будем пользоваться устной и письменной десятичной 
нумерацией как вспомогательным средством, так как этот «язык» 
понятен всем.

Определение. Записью натурального числа n в p-ичной систе-
ме счисления (в системе счисления с основанием p, где p – нату-
ральное число и p≠1) называется его представление в виде
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 n = nk · p
k + nk – 1 · p

k – 1 + … + n1 · p + n0,  (3.1)
где коэффициенты nk, nk – 1, …, n1, n0 принимают целые значе-

ния от 0 до p – 1 включительно, причем nk≠0.
Сумму в правой части равенства (3.1) принято называть под-

робной p-ичной записью числа n. Каждое слагаемое этой записи 
принято называть разрядным слагаемым. Все разрядные слагае-
мые от nk · p

k до n0 · p
0 = n0 должны в этой записи присутствовать. 

Выполнить это требование нельзя, если не использовать в каче-
стве возможных коэффициентов число 0 (в этой записи 0 – это 
не только знак пропуска разряда, но и цифра для обозначения 
полноценного целого числа – числа «ноль»). Подробную запись 
можно заменить краткой записью этого же числа, в которой явно 
сохраняются только коэффициенты nk, nk – 1, …, n1, n0, причем за-
писываются они друг за другом в строчку без пробелов и запя-
тых, а множители pk, …, p0 явно не записываются, но без проблем 
восстанавливаются по той позиции, которую занимает соответ-
ствующая цифра в записи числа, считая справа налево. Также 
в конце записи в виде индекса в скобках указывается основание 
системы счисления:
 nknk – 1 … n1n0 (р). (3.2)

Замечание. Чтобы при записи в буквенном виде не возникало 
путаницы между краткой записью числа и произведением несколь-
ких множителей, обозначенных буквами, над краткой записью 
принято писать горизонтальную черту:
 ____________ 
 nknk – 1 …n1n0 (р) (3.3)

Очень важно, что от подробной записи, в которой, как мы уже 
отмечали, должны присутствовать разрядные слагаемые по поряд-
ку без пропусков, можно однозначно перейти к краткой записи, 
а от краткой – к подробной. При этом подробная запись (а значит, 
и краткая) для любого натурального числа в системе с любым 
основанием существует и является единственной. Доказательство 
этого важного факта на примере десятичной системы было рас-
смотрено в предыдущей главе.

Сколько же требуется различных знаков (цифр), чтобы записать 
любое число в p-ичной позиционной системе счисления? Ответ 
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на этот вопрос очевиден: всего нужно p цифр, которые требуются 
для обозначения коэффициентов подробной записи, т.е. для обо-
значения чисел 0, 1, …, p – 1.

Как же целесообразно решать проблему введения своих цифр 
для различных систем счисления? Есть очень простой и понятный 
способ ее решения. Прежде всего, все такие системы следует раз-
делить на две группы в зависимости от того, будет ли основание 
системы меньше десяти (p < 10), либо оно будет больше десяти 
(p > 10).

В первом случае возникает совсем простая и понятная си-
туация (различных цифр требуется меньше десяти), когда 
мы можем использовать знакомые всем цифры общепринятой 
десятичной системы счисления, но не все, а только первые p 
из имеющихся, т.е. цифры, с помощью которых мы обозначаем 
однозначные числа от 0 до p – 1. Например, в пятеричной систе-
ме счисления требуется пять цифр: 0, 1, 2, 3, 4, а в двоичной – 
всего две: 0 и 1.

Во втором случае ситуация сложнее, так как в таких систе-
мах счисления нужно иметь больше десяти цифр, а следова-
тельно, нам не обойтись без введения дополнительных цифр. 
Возможные пути решения этой проблемы рассмотрим на при-
мере двенадцатеричной системы счисления. В этой системе 
(а счет в ней ведется дюжинами) нужно иметь двенадцать раз-
личных цифр. Десять цифр у нас есть. Это 0, 1, 2, 3, 4, 5, 6, 7, 
8, 9. Нужны еще две цифры, которые будут обозначать число, 
следующее сразу за числом 9, и число, которое следует сразу 
за только что указанным числом. Это могут быть любые два 
знака. Например, две первые буквы греческого алфавита: α, β. 
Но этот подход нельзя признать удачным. Если новых цифр по-
требуется существенно больше, то букв алфавита может просто 
не хватить, но даже если мы привлечем буквы другого алфавита 
или какие-то еще знаки, то возникнет проблема с запоминани-
ем числового смысла новых знаков (без такого запоминания си-
стемой счисления пользоваться не очень удобно). Решается эта 
проблема очень простым способом: в качестве новых цифр сле-
дует взять нужное количество десятичных записей чисел после 
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числа 9, которые снабжены некоторым специальным значком, 
что позволит отличить цифру от записи соответствующего мно-
гозначного числа. Так, в двенадцатиричной системе счисления 
можно использовать две новые цифры: (10), (11). Вместо скобок 
можно использовать какие-то значки над десятичной записью. 
Например, ^ или ~.

Замечание. Напомним, что в алфавитной нумерации Древ-
ней Руси использовался надстрочный знак, который называл-
ся «титло». С его помощью буквы «превращались» в цифры. 
Нечто похожее делаем и мы, когда предлагаем с помощью до-
полнительного знака «превратить» привычную цифровую де-
сятичную запись многозначного числа в цифру, обозначающую 
однозначное число в недесятичной позиционной системе счи-
сления с основанием больше десяти.

При таком подходе нет никаких ограничений в количестве 
введения новых цифр, а также нет проблем с запоминанием чи-
слового смысла каждой новой цифры. Предположим, что нам 
нужно договориться, как мы будем записывать (в порядке воз-
растания) однозначные числа в двадцатеричной позиционной 
системе счисления. Следуя описанному выше подходу, эта дого-
воренность может быть реализована следующим образом: 0, 1, 
2, 3, 4, 5, 6, 7, 8, 9, (10), (11), (12), (13), (14), (15), (16), (17), (18), 
(19) – все цифры данной системы счисления. При этом не тре-
буется никаких дополнительных разъяснений относительно ме-
стоположения каждого из обозначаемых этими цифрами двад-
цати однозначных чисел в данном ряду: не составляет никакого 
труда записать числа, между которыми расположено, например, 
число (16), или какое число следует сразу за числом 9.

Замечание. Для понимания принципов записи чисел в раз-
личных позиционных системах счисления важно обратить вни-
мание на следующий факт: после наибольшего однозначного 
числа сразу следует наименьшее двузначное число, которое 
во всех таких системах счисления записывается как 10. Толь-
ко в десятичной системе 10 обозначает «десяток», в двенадца-
теричной – «дюжину», а в двоичной – «пару», т.е. обозначает 
основание данной системы счисления.
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3.6. АРИФМЕТИЧЕСКИЕ ДЕЙСТВИЯ В НЕДЕСЯТИЧНЫХ 
ПОЗИЦИОННЫХ СИСТЕМАХ СЧИСЛЕНИЯ

Рассматривая вопрос о письменных алгоритмах арифметиче-
ских действий в недесятичных позиционных системах счисления, 
следует сразу обратить внимание на тот факт, что можно использо-
вать алгоритмы, которые полностью аналогичны по своему устрой-
ству общеизвестным алгоритмам сложения, вычитания, умноже-
ния и деления «столбиком», которые применяются в десятичной 
системе счисления. Отличие состоит лишь в том, что при выполне-
нии указанного алгоритма мы должны пользоваться соответству-
ющей таблицей сложения (для алгоритмов сложения и вычитания) 
или таблицей умножения (для алгоритмов умножения и деления) 
однозначных чисел.

Замечание. Напомним, что алгоритмы умножения и деления 
«столбиком» устроены таким образом, что при их выполнении тре-
буется умение выполнять алгоритмы сложения и вычитания. Так, 
в алгоритм умножения «столбиком» многозначных чисел «встро-
ен» алгоритм сложения «столбиком» многозначных чисел, причем 
обобщенный вариант этого алгоритма, когда число слагаемых мо-
жет быть больше двух. Алгоритм деления «столбиком» (часто этот 
алгоритм называют «деление уголком») требует не только знания 
таблицы умножения однозначных чисел, но и умения умножать 
однозначное число на многозначное («в строчку»), а также вычи-
тать «столбиком» многозначные числа. Но все указанные особен-
ности алгоритмов имеют место в позиционной системе счисления 
с любым основанием.

Итак, нам нужно разобраться, как устроены таблицы сложения 
и умножения однозначных чисел в различных недесятичных пози-
ционных системах счисления. Для этого рассмотрим два примера. 
Пусть это будут пятеричная система счисления (p < 10) и двенад-
цатеричная система счисления (p > 10).

В пятеричной системе счисления мы используем следующие 
цифры: 0, 1, 2, 3, 4. Если в этой системе записать по порядку пер-
вые шестнадцать натуральных чисел, то это будет выглядеть так: 
1, 2, 3, 4, 10, 11, 12, 13, 14, 20, 21, 22, 23, 24, 30, 31. Используя 
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этот отрезок  натурального ряда чисел, записанных в пятеричной 
системе счисления и хорошо известные свойства сложения и ум-
ножения (коммутативность, дистрибутивность), мы можем легко 
заполнить соответствующие таблицы (см. табл. 3.1 и 3.2).

Таблица 3.1
Таблица сложения однозначных чисел

в пятеричной системе счисления
b

a
0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 10

2 2 3 4 10 11

3 3 4 10 11 12

4 4 10 11 12 13

Далее приведена таблица умножения однозначных чисел в пя-
теричной системе счисления.

Таблица 3.2
Таблица умножения однозначных чисел

в пятеричной системе счисления
b

a
0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 11 13

3 0 3 11 14 22

4 0 4 13 22 31

Покажем, как работает эта таблица при поразрядном способе 
сложения, вычитания, умножения и деления многозначных чисел 
в пятеричной системе счисления (см. рис. 3.9).
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Рис. 3.9. Примеры письменных вычислений в пятеричной системе счисления

Теперь рассмотрим аналогичные вопросы, но применительно 
к двенадцатеричной системе счисления. Сначала покажем, как вы-
глядят таблицы сложения и умножения однозначных чисел в этой 
системе (см. табл. 3.3 и 3.4).

Таблица 3.3
Таблица сложения однозначных чисел 
в двенадцатеричной системе счисления

b
a

0 1 2 3 4 5 6 7 8 9 (10) (11)

0 0 1 2 3 4 5 6 7 8 9 (10) (11)

1 1 2 3 4 5 6 7 8 9 (10) (11) 10

2 2 3 4 5 6 7 8 9 (10) (11) 10 11

3 3 4 5 6 7 8 9 (10) (11) 10 11 12

4 4 5 6 7 8 9 (10) (11) 10 11 12 13

5 5 6 7 8 9 (10) (11) 10 11 12 13 14

6 6 7 8 9 (10) (11) 10 11 12 13 14 15

7 7 8 9 (10) (11) 10 11 12 13 14 15 16

8 8 9 (10) (11) 10 11 12 13 14 15 16 17

9 9 (10) (11) 10 11 12 13 14 15 16 17 18

(10) (10) (11) 10 11 12 13 14 15 16 17 18 19

(11) (11) 10 11 12 13 14 15 16 17 18 19 1(10)
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Таблица 3.4
Таблица умножения однозначных чисел
в двенадцатеричной системе счисления

b
a

0 1 2 3 4 5 6 7 8 9 (10) (11)

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9 (10) (11)

2 0 2 4 6 8 (10) 10 12 14 16 18 1(10)

3 0 3 6 9 10 13 16 19 20 23 26 29

4 0 4 8 10 14 18 20 24 28 30 34 38

5 0 5 (10) 13 18 21 26 2(11) 34 39 42 47

6 0 6 10 16 20 26 30 36 40 46 50 56

7 0 7 12 19 24 2(11) 36 41 48 53 5(10) 65

8 0 8 14 20 28 34 40 48 54 60 68 74

9 0 9 16 23 30 39 46 53 60 69 76 83

(10) 0 (10) 18 26 34 42 50 5(10) 68 76 84 92

(11) 0 (11) 1(10) 29 38 47 56 65 74 83 92 (10)1

Ниже приведены примеры выполнения письменных алгорит-
мов сложения, вычитания, умножения и деления «столбиком» 
в двенадцатеричной системе счисления (см. рис. 3.10).

Рис. 3.10. Примеры письменных вычислений в двенадцатеричной системе 
счисления



91

Глава 3. Системы счисления

3.7. ПЕРЕХОД ОТ ОДНОЙ ПОЗИЦИОННОЙ 
СИСТЕМЫ СЧИСЛЕНИЯ К ДРУГОЙ

В этом параграфе мы рассмотрим вопрос перевода записи дан-
ного числа, сделанной в позиционной системе с одним основани-
ем, в запись этого же числа в позиционной системе с другим осно-
ванием.

Начнем с самого простого случая, а именно со случая перевода 
из недесятичной позиционной системы счисления в десятичную. 
Для осуществления такого перевода достаточно знать, какое «деся-
тичное» число обозначает каждая цифра рассматриваемой недеся-
тичной системы счисления, а также знать основание этой системы 
счисления и уметь выполнять сложение и умножение (возведение 
в степень) в десятичной системе счисления. Что касается количе-
ственного смысла цифр, то его установить очень просто, учитывая 
тот способ введения «новых» цифр, который мы предложили. Если 
цифра «старая» (например, 7), то ее количественный смысл остает-
ся неизменным, а если цифра «новая» (например, (12)), то ее коли-
чественный смысл устанавливается простым отбрасыванием ско-
бок: (12) в двадцатеричной системе имеет тот же смысл, что и 12 
в десятичной. Покажем, как перевести в десятичную систему чи-
сла, записанные в других позиционных системах счисления:
а) 1234(5) = 1 · 53 + 2 · 52 + 3 · 5 + 4 = 125 + 50 + 15 + 4 = 194;
б) 2(10)(11)(12) = 2 · 122 + 10 · 12 + 11 = 2 · 144 + 120 + 11 = 419.
Теперь рассмотри более сложный случай – перевод из десятич-

ной системы счисления в недесятичную. Предположим, что нам 
нужно некоторое число а (для которого есть десятичная запись) за-
писать в p-ичной системе счисления (p ≠ 10). Это означает, что чи-
сло а должно быть представлено в следующем виде:

а = nk · p
k + nk – 1 · p

k – 1 + … + n1 · p + n0, 
где коэффициенты nk, nk – 1, …, n1, n0 принимают целые значения 

от 0 до p – 1 включительно, причем nk ≠ 0 (см. (3.1)).
Преобразуем это выражение следующим образом:

а = nk · p
k + nk – 1 · p

k – 1 + … + n1 · p + n0 =
= (nk · p

k – 1 + nk – 1 · p
k – 2 + … + n1) · p + n0 = q · p + n0, 

где n0 < p.
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Это означает, что мы разделили а на р с остатком в деся-
тичной системе (р должно быть записано в десятичном виде). 
При этом число n0 является остатком в этом делении, а число 
q = nk · p

k – 1 + nk – 1 · p
k – 2 + … + n1 – неполным частным. Записав 

остаток n0 в р-ичном виде, мы получим последнюю цифру искомой 
р-ичной записи. Теперь можем найти предпоследнюю цифру иско-
мой р-ичной записи, а именно цифру n1. Сделать это можно анало-
гичным образом, разделив с остатком число q на число р. Остатком 
в этом делении будет n1, т.е. предпоследняя цифра искомой р-ичной 
записи (если для остатка мы используем соответствующую запись). 
Действуя таким же образом, мы постепенно найдем все цифры 
искомой р-ичной записи (см. рис. 3.11). Эту процедуру можно за-
писывать, используя повторяющееся деление «столбиком».

Рис. 3.11. Примеры перевода записи чисел в недесятичные системы счисления

Нам осталось рассмотреть самый сложный случай – перевод 
из недесятичной системы счисления в недесятичную. Этот слу-
чай действительно является самым сложным, если не использо-
вать десятичную систему. В указанных ограничениях для перевода 
из недесятичной системы с основанием р1 в недесятичную систему 
с основанием р2 нужно уметь выполнять (правильно и достаточно 
быстро) деление данного числа а на число р2 с остатком в системе 
с основанием р1. Это не совсем простая задача, хотя и решаемая 
при определенной тренировке. Мы не будем уделять внимание это-
му непосредственному способу перевода, а покажем, как решить ту 
же задачу по переводу, используя «обходной» путь, который осно-
ван на использовании десятичной системы счисления. Суть этого 
способа состоит в следующем. Сначала нужно перевести запись 
данного числа из недесятичной системы с основанием р1 в деся-
тичную систему, а потом полученную десятичную запись данного 
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числа перевести в недесятичную с основанием р2 (как осущест-
вить эти два вида перевода, мы подробно рассказали чуть выше).

3.8. ОСОБЕННОСТИ УСТНОЙ НУМЕРАЦИИ 
В РАЗЛИЧНЫХ СИСТЕМАХ СЧИСЛЕНИЯ

В заключительном параграфе данной главы поговорим более 
подробно об устной нумерации. И начнем мы с устной нумерации, 
которая существует в современном русском языке. Это для нас 
близко и наиболее интересно.

Прежде всего, нужно определить, какие числительные в рус-
ском языке выпадают из общей схемы письменной десятичной ну-
мерации, а потом проанализировать эти ситуации.

Начнем с чисел первого десятка. Однозначные натуральные чи-
сла имеют специальные знаки для их записи, поэтому в устной ну-
мерации они должны иметь самостоятельные названия. При этом 
название одного однозначного числа не должно быть связано 
по смыслу с названиями других однозначных чисел. Именно та-
кую картину мы и наблюдаем в русском языке. Поэтому на данном 
числовом отрезке противоречия не возникают.

Замечание (о цифрах). В математике существуют понятия 
«число» и «цифра», которые принципиально отличаются друг 
от друга, но в терминологии, к сожалению, такого отличия не сло-
жилось. Мы говорим, что у нас есть число «три» (три коня, три 
сына, три яблока и т.д.). Но в каких-то случаях за термином «три» 
может скрываться соответствующая цифра (в записи данного чи-
сла встречается «три», напиши в углу страницы «три» и т.д.). Было 
бы очень хорошо избавиться от этой путаницы. Сделать это мож-
но, например, введя в общее употребление для цифр свои терми-
ны. Такая возможность имеется, если привычные термины «один», 
«два» и т.д. оставить для однозначных чисел, а цифры называть 
так: «единица», «двойка», «тройка», …, «девятка». Но что-то это-
му мешает. Скорее всего, пресловутая инерция (языка и мышле-
ния). Других серьезных причин не видно. Учителю начальных 
классов очень часто приходится иметь дело с ситуациями, когда 
очень важно правильно использовать понятия «число» и «цифра». 
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Например, сказать, что «мы к данному числу справа приписали 
число 0», это значит, допустить грубую понятийно-терминологи-
ческую ошибку. Правильно было бы сказать так: «к записи дан-
ного числа справа приписали цифру 0». Вообще, мы предлагаем 
учителям всегда в подобных ситуациях руководствоваться одним 
простым правилом: пишем мы цифры, а с их помощью записываем 
числа.

Число «десять», которое является основанием системы счисле-
ния и обозначается как 10 (во всех позиционных системах осно-
вание системы обозначается именно так) должно иметь самостоя-
тельное название, что и наблюдается в русском языке (и не только 
в нем). Таким образом, первый десяток мы проанализировали.

Теперь рассмотрим числа второго десятка. Десятичная запись 
таких чисел (не учитывая числа, состоящего их двух десятков) стро-
ится следующим образом: сначала записывается цифра 1, которая 
обозначает число десятков, а потом цифра, которая обозначает чи-
сло единиц. Если обратиться к соответствующим числительным, 
то они устроены совсем по-другому. Вот мы и столкнулись с пер-
выми несоответствиями. Должно быть так: «десять один», «десять 
два», …, «десять девять». А у нас: «одиннадцать», «двенадцать», …, 
«девятнадцать». В этих числительных мы легко можем найти «деся-
ток» – слово «дцать», найти соответствующее слово для числа еди-
ниц («один», «две», «три» и т.д.) и соединительную связку-предлог 
«на». Мы ничего не имеем против того, что все эти части в каждом 
случае образовали одно слово, но почему порядок вхождения ча-
стей в единое слово не соответствует порядку, который имеет ме-
сто в письменной записи. Объяснить это можно одной причиной – 
рассматриваемые числительные в русском языке возникли гораздо 
раньше, чем на Руси стали использовать десятичную систему счи-
сления. Это числительные, которые полностью соответствуют по-
рядку записи чисел второго десятка в алфавитной нумерации Древ-
ней Руси (там сначала писалась буква, которая обозначала числа 
единиц, а потом буква, обозначающая десяток). Данные числитель-
ные не затронул переход к десятичной системе счисления, который 
происходил в нашей стране в начале XVIII века. Они благополучно 
сохранились в языке до настоящего времени.
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Если двигаться дальше по натуральному ряду чисел, то следую-
щая «остановка» должна произойти на числительном «сорок». Это 
особенное числительное, в котором при всем желании нельзя най-
ти никаких признаков отсылки к четырем десяткам. Существуют 
разные гипотезы, которые объясняют происхождение этого числи-
тельного, но достоверность их невозможно подтвердить. Наи более 
распространенное объяснение заключается в следующем: словом 
«сорок» называлась связка из четырех десятков собольих шкур, 
которая служила стандартной единицей при торговле мехами. По-
степенно это слово и заняло место соответствующего числитель-
ного. На наш взгляд, более красивой является следующая версия: 
слово «сорок» созвучно слову «срок», которое обозначает очень 
значимый (по разным причинам) временной промежуток. Случай-
но ли наиболее важные для человека сроки представляют собой 
временные промежутки в четыре десятка дней, четыре десятка 
недель, четыре десятка лет? Ответ на этот вопрос мы предлагаем 
дать нашим читателям, привлекая различные библейские сюжеты 
и биологические закономерности.

При дальнейшем движении по натуральному ряду мы очень бы-
стро столкнемся еще с одним несоответствием. Речь идет о числи-
тельном, которое обозначает девять десятков. Почему это «девяно-
сто», а не «девятьдесят»? Если к числительному «девять» в слове 
«девяносто» есть хоть какая-то отсылка (первые четыре буквы), 
то указания на десятки нет никакого. Более того, есть упоминание 
числительного «сто», о котором пока еще (следуя письменной ну-
мерации) говорить рано. Попытки объяснить смысл этого числи-
тельного так же предпринимались. Кто-то пытался это связать со 
счетом девятками, опираясь на устоявшиеся в устной речи слово-
сочетания «в тридевятом царстве», «за тридевять земель». Кто-то 
искал связь с девятью десятками или девятым десятком, кто-то 
рассматривал конструкцию «девять до ста», но все эти вариан-
ты выглядят не очень убедительно, поэтому мы не будем больше 
развивать данную тему. Отметим только, что числительное «де-
вятьдесят» существовало в русском языке до XIV века, а потом 
было вытеснено числительным «девяносто». В начале XVIII века 
в «Арифметике» Л.Ф. Магницкого была предпринята попытка 
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вернуть  числительное «девятьдесят» и использовать аналогич-
ные числительные для «круглых» чисел первой сотни: «двадесят», 
«тридесят», «четыредесят» и т.д., но она не увенчалась успехом.

Завершая разговор об особенностях устной нумерации в рус-
ском языке, мы хотим обратить внимание еще на одно «несоот-
ветствие», а именно: на появление термина «миллиард» в ряду чи-
слительных «миллион», «миллиард», «триллион», «квадриллион», 
«квинтиллион», «секстиллион» и т.д. Не составляет труда понять, 
что «миллиард» занимает место «биллиона» (термин «биллион» 
знаком нам по использованию этого числительного в других язы-
ках), но в чем причина такой замены. Этому есть простое и до-
стоверное объяснение. Дело в том, что существуют две шкалы 
названия трехразрядных классов – длинная и короткая. В корот-
кой шкале пользуются такими числительными: «тысяча» (103), 
«миллион» (106), «биллион» (109), «триллион» (1012), «квадрил-
лион» (1015) и т.д. В длинной шкале появляются дополнительные 
термины: «тысяча» (103), «миллион» (106), «миллиард» (109), «бил-
лион» (1012), «биллиард» (1015) и т.д. В разных странах в разное 
время использовались разные шкалы, поэтому нужно быть очень 
внимательным при использовании этих терминов. В России был 
период использования длинной шкалы (начало XVIII века), потом 
под влиянием французских математиков (конец XVIII века) был 
осуществлен переход на короткую шкалу, но термин «миллиард» 
перешел из длинной шкалы в короткую, вытеснив «биллион», бла-
го обозначали они одно и то же число (109), но в разных шкалах.

ЗАДАЧИ К ГЛАВЕ 3

1. Запишите числа 9, 23, 145, 2369, 10 537 в системе счисления 
Древнего Египта.

2. Запишите числа 7, 32, 543, 1659, 20 635 в системе счисления 
Древнего Вавилона.

3. Запишите числа 9, 45, 368, 2987 в системе счисления Древне-
го Рима (римскими цифрами).

4. Запишите числа 5, 17, 256, 1637, 23 589 в системе счисления 
Древней Руси.
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5. Выполните сложение в пятеричной системе счисления: 
1243(5) + 2334(5).

6. Выполните вычитание в пятеричной системе счисления: 
41 021(5) – 34 233(5).

7. Выполните умножение в пятеричной системе счисления: 
214(5) · 32(5).

8. Выполните деление в пятеричной системе счисления: 
30 141(5) : 423(5).

9. Составьте таблицу сложения однозначных чисел в восьме-
ричной системе счисления и вычислите в ней значение следующе-
го выражения: 4623(8) + 237(8) – 3657(8).

10. Составьте таблицу умножения однозначных чисел в восьме-
ричной системе счисления и вычислите в ней значение следующе-
го выражения: 2651(8) : 25(8) · 3064(8).

11. Выполните сложение в двенадцатеричной системе счисле-
ния: 5(10)69(12) + 95(11)8(12).

12. Выполните вычитание в двенадцатеричной системе счисле-
ния: 10(10)5(12) – 999(12).

13. Выполните умножение в двенадцатеричной системе счисле-
ния: (11)579(12) · 5(10)3(12).

14. Выполните деление в двенадцатеричной системе счисления: 
504 319(12) : (10)3(12).

15. Составьте таблицу сложения однозначных чисел в двадца-
теричной системе счисления и вычислите в ней значение следую-
щего выражения: 9(15)7(19)4(20) + 2(17)(10)3(20) – (18)(18)1(19)(20).

16. Составьте таблицу умножения однозначных чисел в двад-
цатеричной системе счисления и вычислите значение следующего 
выражения: 1(10)5(20) : 15(20) · 2(15)5(20).

17. Данные числа запишите в десятичной системе счисления: 
10 110 011(2), 20 121(3), 4102(5), 7472(8), (11)1(10)(12), 9(19)5(20).

18. Данные числа запишите в двоичной системе счисления: 145, 
258, 1111.

19. Данные числа запишите в семеричной системе счисления: 
346, 2048, 11 237.

20. Данные числа запишите в пятнадцатеричной системе счи-
сления: 186, 4056, 12 355.
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21. Данные числа запишите в троичной системе счисления: 
1234(5), (10)(10)10(12).

22. Найдите основание системы счисления, в которой справед-
ливы равенства:
а) 24(p) + 32(p) = 100(p)
б) 342(p) + 144(p) = 1041(p)
в) 365(p) + 254(p) = 652(p)

23. Докажите, что любое натуральное число можно представить 
в виде алгебраической суммы различных степеней числа 3. (Указа-
ние: воспользуйтесь записью числа в троичной системе счисления 
и равенством 2 · 3k = 3k + 1 – 3k.)
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ГЛАВА 4.
ДЕЛИМОСТЬ ЦЕЛЫХ 

НЕОТРИЦАТЕЛЬНЫХ ЧИСЕЛ

4.1. ОТНОШЕНИЕ ДЕЛИМОСТИ 
НА МНОЖЕСТВЕ ЦЕЛЫХ НЕОТРИЦАТЕЛЬНЫХ ЧИСЕЛ 

И ЕГО ПРОСТЕЙШИЕ СВОЙСТВА
На множестве целых неотрицательных чисел можно опре-

делить отношение «делимости» (или «кратности») следующим 
образом.

Определение 4.1. Целое неотрицательное число a делится 
на натуральное число b (обозначается a b), если существует та-
кое целое неотрицательное число c, что a = b · c. В этом случае 
принято также говорить, что a кратно b или b является делите-
лем (делит) a. Для обозначения того, что b делит a используется 
вертикальная черта (b|a).

Отношение делимости обладает рядом свойств. Остановим-
ся сначала на простейших свойствах этого отношения.
1. Любое целое неотрицательное число делится на число1.
2. Любое натуральное число делится на себя.
3. Число 0 делится на любое натуральное число.
4. Если a делится на b, а b делится на c, то a делится на c 

(для любого целого неотрицательного числа a и любых на-
туральных чисел b и c).

5. Если а делится на b, а b делится на a, то a = b (для любых 
натуральных чисел a и b).
Провести доказательства этих свойств не составляет особо-

го труда. Требуется только привлечь определение отношения 
делимости (см. определение 4.1) и сделать очевидные умо-
заключения. Для доказательства свойства 5 потребуется еще 
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привлечение  соответствующих свойств неравенств. Предлагаем 
провести эти доказательства самостоятельно!

Некоторые из перечисленных свойств хорошо узнаваемы. Так 
свойство 2 является свойством рефлексивности отношения дели-
мости на множестве натуральных чисел, а свойство 5 – свойством 
антисимметричности этого отношения на том же множестве. Если 
в свойстве 4 число a брать из множества натуральных чисел, т.е. 
исключить случай a = 0, то данное свойство будет являться свой-
ством транзитивности отношения делимости на множестве нату-
ральных чисел.

4.2. ДЕЛИМОСТЬ СУММЫ, 
РАЗНОСТИ И ПРОИЗВЕДЕНИЯ 

ЦЕЛЫХ НЕОТРИЦАТЕЛЬНЫХ ЧИСЕЛ
Рассмотрим теперь другие свойства отношения делимости це-

лых неотрицательных чисел.
Теорема 4.1. (Первая теорема о делимости суммы).
Если a делится на c и b делится на c, то a + b делится на c 

(для любых целых неотрицательных чисел a и b и любого нату-
рального числа c).

Доказательство. Так как по условию a делится на c, то су-
ществует такое целое неотрицательное число k, что a = c · k. 
Так как по условию b делится на c, то существует такое целое 
неотрицательное число m, что b = c · m. Из этого следует, что 
a + b = c · k + c · m = c(k + m), где k + m – это некоторое целое 
неотрицательное число (при сложении любых целых неотрица-
тельных чисел обязательно получается какое-то целое неотрица-
тельное число). Опираясь на определение 4.1, получаем, что сумма 
a + b делится на число c.

Замечание. Теорему о делимости суммы можно обобщить 
на произвольное число слагаемых. В этом случае нужно говорить 
о том, что делимость каждого слагаемого суммы целых неотри-
цательных чисел на произвольное натуральное число гарантирует 
делимость всей суммы на это число.

Теорема 4.2. (Первая теорема о делимости разности).
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Если a делится на c, b делится на c и a ≥ b, то a – b делится на c 
(для любых целых неотрицательных чисел a и b и любого нату-
рального числа c).

Доказательство этой теоремы аналогично доказательству те-
оремы 4.1. Дополнительно нужно только провести рассуждения, 
подтверждающие существование в целых неотрицательных чи-
слах разности k – m при условии, что разность a – b существует 
в целых неотрицательных числах.

Теорема 4.3. (Первая теорема о делимости произведения).
Если a делится на c или b делится на c, то a · b делится на c 

(для любых целых неотрицательных чисел a и b и любого нату-
рального числа c).

Доказательство этой теоремы аналогично доказательству тео-
ремы 4.1. Дополнительно нужно только вспомнить о существова-
нии ассоциативного закона умножения и о том, что произведение 
любых целых неотрицательных чисел является некоторым целым 
неотрицательным числом.

Замечание. Теорему о делимости произведения можно обоб-
щить на произвольное число множителей. В этом случае нуж-
но говорить о том, что делимость хотя бы одного множителя 
произведения целых неотрицательных чисел на произвольное 
натуральное число гарантирует делимость всего произведения 
на это число.

4.3. ДЕЛЕНИЕ С ОСТАТКОМ 
И ОТНОШЕНИЕ ДЕЛИМОСТИ

В этом параграфе мы покажем, как делимость целых неотри-
цательных чисел связана с остатками от деления целых неотрица-
тельных чисел на натуральные числа. Сначала напомним, что раз-
делить целое неотрицательное число a на натуральное число b 
с остатком означает найти целые неотрицательные числа q и r та-
кие, что a = bq + r, где r < b. При этом число q называется непол-
ным частным, а число r – остатком. Сопоставляя это определение 
и определение 4.1, можно установить следующее: если остаток 
r = 0, то число a находится в отношении делимости с числом b. 
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В этом случае еще принято говорить, что число a делится на число 
b нацело.

Остатки от деления двух целых неотрицательных чисел на дан-
ное натуральное число позволяют легко установить наличие 
или отсутствие делимости на данное число суммы или разности 
этих чисел.

Пусть мы разделили произвольные целые неотрицательные чи-
сла a и b на произвольное натуральное число c с остатком, т.е. име-
ют место следующие равенства:
 a = cq1 + r1, где r1 < c, (4.1)
 b = cq2 + r2, где r2 < c. (4.2)

Тогда, если сумма остатков r1 + r2 равна 0 или равна c, то сумма 
a + b делится на c. При этом обратное утверждение также верно, 
т.е. если сумма целых неотрицательных чисел a + b делится на на-
туральное число c, то сумма остатков r1 + r2 равна 0 или равна c. 
Таким образом, речь идет о другой теореме о делимости суммы, 
которая является обобщением теоремы 4.1.

Теорема 4.4. (Вторая теорема о делимости суммы).
Сумма a + b делится на c тогда и только тогда, когда сумма 

остатков r1 + r2 делится на c, т.е. сумма остатков r1 + r2 равна 0 
или равна c (для любых целых неотрицательных чисел a и b и лю-
бого натурального числа c).

Доказательство этого утверждения основано на применении те-
орем о делимости суммы, разности и произведения, а также на том 
очевидном факте, что для суммы остатков r1 + r2 справедливо двой-
ное неравенство:
 0 ≤ r1 + r2 < 2c. (4.3)

Замечание. Вторая теорема о делимости суммы легко обобща-
ется на произвольное число слагаемых.

Аналогичным образом можно вывести обобщенные теоремы 
о делимости разности и о делимости произведения.

Теорема 4.5. (Вторая теорема о делимости разности).
Разность a-b делится на c тогда и только тогда, когда разность 

остатков r1-r2 равна 0, т.е. r1 = r2 (для любых целых неотрицатель-
ных чисел a и b таких, что a ≥ b, и любого натурального числа c).

Теорема 4.6. (Вторая теорема о делимости произведения).
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Произведение a · b делится на c тогда и только тогда, когда про-
изведение остатков r1 · r2 делится на c (для любых целых неотрица-
тельных чисел a и b и любого натурального числа c).

Замечание. Вторая теорема о делимости произведения легко 
обобщается на произвольное число множителей.

4.4. ПРИЗНАКИ ДЕЛИМОСТИ

В математике и в реальной жизни мы можем столкнуться 
с ситуацией, когда нам нужно узнать, делится ли некоторое на-
туральное число a на некоторое натуральное число b. (Напри-
мер, нужно быстро решить вопрос о возможности расселения 
117 участников школьной олимпиады в трехместные комнаты 
таким образом, чтобы свободных мест не осталось.) Понятно, 
что ответить на этот вопрос можно, если выполнить деление 
с остатком a на b. Но это не всегда можно быстро сделать, если 
нет под рукой калькулятора. На помощь в этом случае приходят 
признаки делимости. Это обычная ситуация, так как теоремы-
признаки и нужны нам для того, чтобы заменить определения, 
которыми в данной ситуации трудно (или даже невозможно) 
воспользоваться.

4.4.1. Признаки делимости на 2, 5 и 10
Рассмотрим подробную десятичную запись произвольного на-

турального числа и преобразуем ее, как представлено в (4.4):
а = nk · 10k + nk – 1 · 10k – 1 + … + n1 · 10 + n0 = 

  = (nk · 10k – 1 + nk – 1 · 10k – 2 + … + n1) · 10 + n0 = q · 10 + n0. (4.4)
Последнее выражение из (4.4), а также теоремы о делимости 

суммы и произведения дают возможность утверждать, что дели-
мость числа а на числа 2, 5, и 10 полностью совпадает с делимо-
стью на эти числа однозначного числа n0, которое записывается 
с помощью последней цифры десятичной записи числа а. Други-
ми словами, если мы хотим узнать, как ведет себя число а в отно-
шении делимости на числа 2, 5 и 10, то следует посмотреть на по-
следнюю цифру n0 десятичной записи этого числа. Для делимости 
на 2 эта цифра должна быть четной (0, 2, 4, 6, 8), для делимости  
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на 5 запись числа а должна оканчиваться либо цифрой 0, либо 
цифрой 5, для делимости на 10 запись числа a должна оканчи-
ваться на 0.

4.4.2. Признаки делимости на 4, 25 и 100
Рассмотрим подробную десятичную запись произвольного на-

турального числа и преобразуем ее, как представлено в (4.5):
a = nk · 10k + nk – 1 · 10k – 1 + … + n2 · 102 + n1 · 10 + n0 = 

  = (nk · 10k – 2 + nk – 1 · 10k-3 + … + n2) · 102 + n1 · 10 + n0 = 
  = q · 100 + (n1 · 10 + n0). (4.5)

Последнее выражение из (4.5), а также теоремы о делимости 
суммы и произведения дают возможность утверждать, что дели-
мость числа a на числа 4, 25, и 100 полностью совпадает с дели-
мостью на эти числа суммы (n1 · 10 + n0), которая при n1≠0 пред-
ставляет собой подробную десятичную запись двузначного числа 
с помощью двух последних цифр записи данного числа, а при n1 = 0 
может рассматриваться как однозначное число n0. Другими слова-
ми, если мы хотим узнать, как ведет себя число a в отношении де-
лимости на числа 4, 25 и 100, то следует посмотреть на две послед-
ние цифры n1 и n0 десятичной записи этого числа. Для делимости 
на 4 эти цифры должны образовывать запись числа (двузначного 
или однозначного), которое делится на 4, для делимости на 25 за-
пись числа a должна оканчиваться либо на 00, либо на 25, либо 
на 50, либо на 75, для делимости на 100 запись числа a должна 
оканчиваться на 00, т.е. на два нуля.

4.4.3. Признаки делимости на 3 и 9
Для того, чтобы вывести признаки делимости на 3 и на 9, пре-

образуем подробную десятичную запись натурального числа a 
следующим образом:

a = nk · 10k + nk – 1 · 10k – 1 + … + n2 · 102 + n1 · 10 + n0 = 
 = nk · (10k – 1) + nk – 1 · (10k – 1 – 1) + … + n2 · (102 – 1) + n1 · (10 – 1) +
  + (nk + nk – 1 + … + n2 + n1 + n0). (4.6)

Последняя скобка в этом выражении представляет собой сум-
му однозначных чисел, записанных соответствующими цифра-
ми краткой десятичной записи данного натурального числа a. 
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Для краткости эту сумму принято называть «суммой цифр чи-
сла a». От этой суммы и будет зависеть делимость данного чи-
сла на 3 и на 9. Обосновать это не составляет особого труда. До-
статочно обратить внимание на то, что разности 10 – 1, 102 – 1, 
103 – 1 и т.д. являются числами 9, 99, 999 и т.д. Очевидно, эти чи-
сла делятся на 9 и на 3. Остается привлечь теоремы о делимости 
произведения и делимости суммы (первые теоремы), чтобы до-
казать, что выражение nk · (10k – 1) + nk – 1 · (10k – 1 – 1) + … + n2 ·
· (102 – 1) + n1 · (10 – 1) всегда делится на 3 и на 9. Теперь, опира-
ясь на первую теорему о делимости разности, получаем, что де-
лимость натурального числа a на 3 (на 9) напрямую зависит 
(полностью совпадает) от делимости (с делимостью) на 3 (на 9) 
суммы цифр числа a.

4.5. ПРОСТЫЕ И СОСТАВНЫЕ ЧИСЛА

Хорошо известно (см. простейшие свойства делимости), 
что любое натуральное число делится на число 1 и на само 
себя. Таким образом, любое натуральное число a, которое боль-
ше числа 1, имеет два натуральных делителя: 1 и a. При этом 
есть числа, которые других натуральных делителей не имеют. 
Например, числа 5, 13, 23. А есть и другие числа, которые име-
ют больше двух натуральных делителей. Например, 4, 9, 21. 
Об этом свойстве натуральных чисел было известно еще мате-
матикам древности. По числу наличия различных натуральных 
делителей все натуральные числа разбиваются на три класса. 
В первый класс попадает число 1. У него ровно один натураль-
ный делитель – это число 1. Больше таких натуральных чисел 
нет. Этот класс не получил никакого названия. Второй класс со-
ставляют натуральные числа, которые имеют ровно два различ-
ных натуральных делителя. Такие числа называют простыми. 
К классу простых чисел относятся числа 2, 3, 5, 7, 11, 13, 17, 
19, 23, 29, … (Вопросы о способе нахождения простых чисел 
и о конечности или бесконечности множества простых чисел 
будут рассмотрены в следующих двух параграфах.) Все осталь-
ные натуральные числа (не попавшие ни в первый, ни во второй 
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классы) образуют класс составных чисел. В качестве примера 
составного числа можно привести любое четное натуральное 
число, кроме числа 2. Не составляет труда привести и другие 
примеры составных чисел. Так, если перемножить любые два 
натуральных числа, которые больше числа 1, то их произведе-
ние, очевидно, будет составным числом. Любое составное чи-
сло имеет больше двух различных натуральных делителей. От-
сюда следует, что у любого составного числа есть хотя бы один 
нетривиальный  натуральный делитель, т.е. натуральный дели-
тель, который отличен от этого числа и числа 1. А это, в свою 
очередь, означает, что у любого составного числа есть хотя 
бы один натуральный делитель, который меньше этого числа 
и не равен 1. Выведенный только что факт позволяет легко до-
казать очень важную теорему.

Теорема 4.7. У любого натурального числа (кроме числа 1) 
есть хотя бы один простой делитель.

Доказательство. Рассмотрим произвольное натуральное чи-
сло a, которое отлично от числа 1. Если оно простое, то теоре-
ма доказана, так как любое натуральное число делится на себя. 
Если оно составное, то у него есть делитель a1, который меньше 
числа a, но больше числа 1 (этот факт мы только что установи-
ли). Если число a1 простое, то теорема доказана, если же оно 
составное (а третьего варианта быть не может), то к нему можно 
применить те же самые рассуждения, что и к числу a. Учитывая, 
что отношение делимости обладает свойством транзитивности 
(делитель делителя данного числа сам является делителем этого 
числа), а также конечность описанного выше процесса (переход 
от a к a1, от a1 к a2 и т.д. не может не закончиться, так как эти 
натуральные числа строго убывают, но остаются больше, чем 
число 1), мы можем утверждать, что теорема доказана.

В заключение этого параграфа сформулируем еще одну тео-
рему, доказательство которой мы предлагаем читателю провести 
самостоятельно.

Теорема 4.8. Наименьший простой делитель данного произ-
вольного составного числа не превосходит квадратного корня 
из этого числа.
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4.6. РЕШЕТО ЭРАТОСФЕНА
Как отличить простое число от составного? Ответ на этот во-

прос в одних случаях не составляет никакого труда, а в других 
случаях это сделать совсем не просто. Если составное число де-
лится на 2, или на 3, или на 5, то установить этот факт помога-
ют признаки делимости, о которых речь шла выше. Если нату-
ральное число не очень большое (например, в пределах первой 
сотни), то найти все его натуральные делители можно как с по-
мощью признаков делимости, так и выполняя непосредственное 
деление с остатком (например, столбиком) на возможные дели-
тели. Для достаточно больших чисел это уже сделать техниче-
ски сложно и осуществлять такую проверку каждый раз, когда 
возникает соответствующий вопрос, не очень разумно. Поэтому 
некоторые математики, взяв на себя эту трудоемкую техниче-
скую работу, занимались расширением таблицы простых чисел, 
все дальше отодвигая верхнюю границу известных простых чи-
сел. Чтобы как-то автоматизировать этот процесс, нужен неко-
торый разумный алгоритм, позволяющий распознавать простые 
(соответственно составные) числа. С появлением ЭВМ были со-
зданы программы, которые позволили за последние 70 лет очень 
существенно отодвинуть верхнюю границу известных простых 
чисел. Так, в 2018 году П. Ларошем было найдено простое число, 
которое в своей десятичной записи содержало 24 862 048 цифр 
(вот его запись с помощью степени: 282589933 – 1). Это интересное 
математическое соревнование, но оно не имеет серьезной пра-
ктической значимости. Составление таблицы простых чисел (т.е. 
таблицы, в которой перечислены все простые числа до опреде-
ленной верхней границы) – это более полезная для теории чи-
сел «вещь». Очень удачный алгоритм составления такой таблицы 
был предложен еще выдающимся древнегреческим ученым Эра-
тосфеном в III веке до н.э. Этот метод получил название «Решето 
Эратосфена». Смысл названия станет понятен тогда, когда мы из-
ложим суть этого метода на простом примере.

Итак, пусть нам нужно найти все простые числа в первой сот-
не натуральных чисел. Для удобства расположим эти числа в виде 
квадратной таблицы.
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Таблица 4.1
Первая сотня натуральных чисел

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17  18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Наша цель – оставить в этой таблице только простые числа, 
т.е. исключить все числа, не являющиеся простыми. Начнем 
действовать по порядку (в порядке возрастания). Число 1 не яв-
ляется простым, поэтому мы его вычеркиваем. Далее идет чи-
сло 2. Оно простое, поэтому мы его подчеркиваем. Далее нужно 
вычеркнуть все числа после числа 2, которые делятся на 2, так 
как они будут составными (это каждое второе число после чи-
сла 2). После завершения этой процедуры вычеркивания первое 
не вычеркнутое (и не подчеркнутое) число будет простым. Это 
число 3. Мы его подчеркиваем. Далее вычеркиваем все числа 
после числа 3, которые делятся на 3, так как они будут состав-
ными (это каждое третье число после числа 3). После завер-
шения этой процедуры вычеркивания первое не вычеркнутое 
(и не подчеркнутое) число будет простым. Это число 5. Мы его 
подчеркиваем. Далее мы продолжаем поступать аналогичным 
образом до тех пор, пока не получим (не подчеркнем) все про-
стые числа первой сотни. В результате у нас должна получиться 
следующая таблица.
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Таблица 4.2
Нахождение простых чисел методом решета Эратосфена
1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Итак, в первой сотне натуральных чисел оказалось 25 про-
стых чисел.

Замечание. Во-первых, обращаем ваше внимание на то об-
стоятельство, что если при очередной процедуре вычеркивания 
нужно вычеркнуть число, которое уже раньше было вычеркну-
то, то повторное вычеркивание ничего нового для этого числа 
не означает: оно так и остается вычеркнутым числом, сколько 
бы раз мы это не повторили. Во-вторых, процедуру вычерки-
вания достаточно провести до чисел, кратных числу 7. Когда 
мы будем вычеркивать числа, которые делятся на 11, на 13 и т.д., 
то мы не вычеркнем ни одного нового числа (т.е. все вычер-
киваемые на этих этапах числа были уже ранее вычеркнуты). 
Попробуйте дать объяснение этому факту (обратите внимание 
на теорему 4.8).

А вот теперь мы вполне можем поговорить о смысле назва-
ния этого метода. Суть процедуры, которую мы проводили, за-
ключается в том, чтобы исключить из множества всех данных 
чисел те числа, которые не являются простыми («плохие» числа 
нужно отсеить от «хороших»). В реальной жизни что-то похожее 
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происходит , когда с помощью решета (сита) отсеивают инород-
ные включения, которые могут присутствовать, например, в муке. 
Таким образом, появление слова «решето» в названии этого ме-
тода вполне оправдано. Есть и другое объяснение. Во времена 
Эратосфена писали на пластинах, покрытых воском. Применяя 
описанный метод, «лишние» числа не вычеркивали, а выкалы-
вали. После многочисленных выкалываний восковая пластинка 
превращалась в решето с большим количеством отверстий.

Замечание. Последователи Эратосфена развивали и совершен-
ствовали этот метод. Особые успехи в этом направлении были 
достигнуты в XX веке благодаря трудам норвежских математиков 
В. Бруна (1885–1978) и его ученика А. Сельберга (1917–2007). 
Среди отечественных математиков можно отметить в этой обла-
сти труды профессора А.А. Бухштаба (1905–1990), который долгие 
годы преподавал в МГПИ им. В.И. Ленина (ныне МПГУ).

4.7. БЕСКОНЕЧНОСТЬ МНОЖЕСТВА ПРОСТЫХ ЧИСЕЛ

Рассматривая вопрос о составлении таблиц простых чисел, 
о нахождении наибольшего известного простого числа, мы ничего 
пока не сказали о том, является ли множество простых чисел бес-
конечным, либо оно конечно. Это один из основополагающих фак-
тов, который нужно знать в плане изучения натуральных чисел. 
Если воспользоваться индуктивными соображения (в первой сот-
не натуральных чисел имеется 25 простых чисел, во второй – 21, 
в третьей – 16), то можно предположить, что далее простые числа 
будут встречаться все реже и реже и, в какой-то момент, вообще за-
кончатся. Но это предположение ошибочно! Уже математики Древ-
ней Греции знали, что простых чисел бесконечно много и умели 
это строго доказывать. Приведем доказательство из знаменитого 
труда Евклида «Начала» (III век до н.э.). Если отнестись к доказа-
тельству Евклида предельно строго, то он доказал несколько иную 
теорему, из которой уже с очевидностью следовало, что простых 
чисел бесконечно много.

Итак, теорема Евклида на современном математическом языке 
формулируется и доказывается следующим образом.
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Теорема 4.9. (Теорема Евклида о бесконечности множества 
простых чисел). Для любого конечного множества простых чисел 
существует простое число, которое ему не принадлежит.

Доказательство. Пусть имеется конечное множество простых 
чисел p1, p2, p3, …, pn. Обозначим через P произведение всех этих 
простых чисел. Далее рассмотрим число M = P + 1. Это число 
не совпадает ни с одним простым числом из рассматриваемого 
множества, так как больше любого такого числа. Если оно про-
стое, то теорема доказана. Если оно составное, то (см. теорему 4.7) 
у него есть простой делитель. Но этот простой делитель не мо-
жет совпадать ни с одним простым числом из рассматриваемого 
множества, так как при делении числа M на любое простое чи-
сло из рассматриваемого множества в остатке получается число 1. 
Таким образом, и в этом (заключительном) случае мы убедились 
в существовании простого числа, которое не принадлежит рассмат-
риваемому множеству простых чисел. Теорема доказана.

4.8. ОСНОВНАЯ ТЕОРЕМА АРИФМЕТИКИ

Пусть у нас имеется произвольное фиксированное составное 
число a. Как мы уже знаем, у любого составного числа обязательно 
есть натуральный делитель, который отличен от числа 1 и от са-
мого числа a. Это означает, что число a можно представить в виде 
произведения двух нетривиальных множителей, каждый из кото-
рых больше числа 1, но меньше числа a, т.е. a = b · c, где 1 < b < a 
и 1 < c < a. Если числа b и c являются простыми, то мы получили 
разложение числа a на простые множители. Если какое-то из этих 
чисел (а может быть сразу оба) является составным (являются со-
ставными), то к каждому составному числу можно применить рас-
суждения, проведенные выше. Этот процесс следует продолжать 
до тех пор, пока все множители не окажутся простыми. Гарантией 
окончания этого процесса служит то, что при разложении состав-
ного числа на два нетривиальных множителя, каждый из этих мно-
жителей меньше данного составного числа, а процесс уменьшения 
натуральных чисел не может продолжаться бесконечно.

Итак, мы доказали следующую очень важную теорему.
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Теорема 4.10. (Теорема о существовании разложения на про-
стые множители).

Любое составное число можно представить в виде произведе-
ния простых множителей.

Представление составного числа в виде произведения простых 
множителей принято называть разложением на простые множите-
ли. Если все простые множители, на которые раскладывается дан-
ное составное число, расположить в порядке не убывания, а потом 
произведения одинаковых множителей (если они есть) записать 
в виде степени, то мы получим каноническое представление дан-
ного числа. Для простого числа его каноническим представлением 
является само это число.

Покажем на примере, как получить каноническое представле-
ние из произвольного разложения на простые множители. Пусть 
у нас имеется некоторое разложение на простые множители чи-
сла 9 809 800 (вопрос о способах разложения натурального числа 
на простые множители мы обсудим чуть позже), которое выглядит 
следующим образом:

9 809 800 = 2 · 5 · 11 · 2 · 13 · 7 · 2 · 7 · 5 · 7 =
=2 · 2 · 2 · 5 · 5 · 7 · 7 · 7 · 11 · 13 = 23 · 52 · 73 · 11 · 13.

Последнее произведение в этой цепочке равенств и есть кано-
ническое представление (разложение) числа 9 809 800.

В общем виде каноническое представление данного числа a вы-
глядит следующим образом:
 a = pα · qβ · … · rγ,  (4.7)

где p, q, …, r – простые числа, причем p < q < … < r, 
а показатели α, β, …, γ – натуральные числа.
Ответим теперь на вопрос, каким образом можно разложить на-

туральное число на простые множители. Для этого можно действо-
вать следующим образом. Сначала получить в свое распоряжение 
таблицу простых чисел до верхней границы, которая превосходит 
данное число. Если данное число простое, то задача решена. Если 
это число составное, то с помощью деления последовательно вы-
деляют из него простые множители, начиная с самого маленького. 
При этом нужно выделить (с помощью деления) рассматриваемый 
множитель максимально возможное число раз (для этого удобно 
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использовать калькулятор, а для решения вопроса о делимости – 
соответствующий признак делимости). Далее переходят к следую-
щему простому множителю и т.д. До тех пор, пока не получается 
интересующее нас разложение. Приведем в качестве примера на-
хождение разложения на простые множители числа 2940 (в правом 
столбике располагаем простые множители, на которые осуществ-
ляем деление, а в левом столбике под данным числом – соответст-
вующие частные).
 2940 | 2 
 1470 | 2 
 735 | 3 
 245 | 5 
 49 | 7 
 7 | 7 
 1| – 

Таким образом, 2940 = 2 · 2 · 3 · 5 · 7 · 7 = 22 · 3 · 5 · 72.
Когда мы научились для произвольного натурального числа на-

ходить его разложение на простые множители, то возникает естест-
венный вопрос: будет ли это разложение единственным? Понятно, 
что мы не имеем в виду перестановку множителей, а говорим о прин-
ципиально ином (по набору простых множителей) разложении. Если 
допустить, что для одного и того же числа существует два различных 
разложения на простые множители, то эти разложения должны отли-
чаться, по крайней мере, одним простым множителем p, т.е. с одной 
стороны это число делится на p, а с другой стороны – не делится на p 
(так как можно доказать, что любое произведение других простых 
множителей не может обеспечить делимость на p). Таким образом, 
мы можем сформулировать следующую теорему.

Теорема 4.11. (Теорема о единственности разложения на про-
стые множители).

Если не учитывать порядок следования множителей, то разло-
жение любого составного числа на простые множители является 
единственным.

Замечание. Строгое доказательство теоремы 4.11 мы приво-
дить не будем, так как оно сложное, а для нашей аудитории вполне 
достаточно интуитивного понимания данного факта.
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Из теорем 4.10 и 4.11 следует очень важная теорема, которая 
получила название основной теоремы арифметики.

Теорема 4.12. (Основная теорема арифметики).
Для любого натурального числа, которое отлично от числа 1, 

существует его каноническое представление (разложение) и оно 
единственно.

Замечание. Теорема 4.12 не случайно получила такое название. 
Действительно, сформулированное в этой теореме знание о муль-
типликативном строении натуральных чисел лежит в основе боль-
шого количества свойств этих чисел, а простые числа выступают 
в роли своеобразных «кирпичиков», из которых построено все 
грандиозное «здание арифметики».

4.9. МУЛЬТИПЛИКАТИВНАЯ СТРУКТУРА ДЕЛИТЕЛЯ 
НАТУРАЛЬНОГО ЧИСЛА

Рассмотрим произвольное натуральное число вместе с его ка-
ноническим разложением. Следуя формуле (4.7), можем записать, 
что

a = pα · qβ · … · rγ.
Если число b является делителем числа a, то это означает, что су-

ществует некоторое натуральное число c такое, что a = b · c. Если 
разложить на простые множители числа b и c, а потом из этих мно-
жителей построить одно общее каноническое разложение правой 
части равенства, то в силу основной теоремы арифметики это ка-
ноническое разложение будет полностью совпадать с каноническим 
разложением для числа a, которое мы записали выше. Это означает, 
что разложение на простые множители числа b (это же относится 
и к числу c) не может включать какие-либо другие простые мно-
жители кроме множителей из канонического разложения числа a, 
т.е. простых чисел p, q, …, r. При этом каждый простой множитель 
не может входить в состав делителя b большее число раз, чем он вхо-
дит в состав данного числа a, а это число совпадает с соответству-
ющим показателем в исходном каноническом разложении числа a. 
Пусть, например, a = 32 · 73 · 11. Тогда делитель b этого числа должен 
иметь следующую мультипликативную структуру: b = 3k · 7m · 11n, 
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где 0 ≤ k ≤ 2, 0 ≤ m ≤ 3, 0 ≤ n ≤ 1. Используя эту структуру, можно 
без особого труда выписать все делители числа 33957 = 32 · 73 · 11. 
Для этого достаточно выбрать возможный набор показателей k, m, 
n (границы изменения этих чисел нам известны). После этого вы-
числить соответствующий делитель. Например, если k = 2, m = 0, 
n = 1, то получается делитель 32 · 70 · 111 = 99. Всего возможных ком-
бинаций показателей будет (2 + 1) · (3 + 1) · (1 + 1) = 24. Это означа-
ет, что у числа 33 957 имеется 24 различных натуральных делителя 
(тривиальные делители 1 и 33 957 включены в это число).

Без особого труда можно вывести общую формулу для произ-
вольного делителя натурального числа по его каноническому раз-
ложению, а также формулу для вычисления числа натуральных де-
лителей у данного натурального числа. Мы предлагаем читателю 
сделать это самостоятельно. Если возникнут затруднения, то мож-
но обратиться к пункту 10.27 работы [1].

4.10. НАИБОЛЬШИЙ ОБЩИЙ ДЕЛИТЕЛЬ

Рассмотрим два натуральных числа. Для примера возьмем числа 
36 и 60. Далее найдем все натуральные делители каждого из этих 
чисел. Так как числа не очень большие, то такой поиск можно осу-
ществить с помощью непосредственной проверки на делимость 
всех чисел, которые могут выступать в этой роли. Пусть A – это 
множество всех натуральных делителей числа 36, а B – числа 60. 
Тогда получим, что A = {1, 2, 3, 4, 6, 9, 12, 18, 36}, а B = {1, 2, 3, 
4, 5, 6, 10, 12, 15, 20, 30, 60}. Найдем множество общих натураль-
ных делителей для чисел 36 и 60. Это будет пересечение множеств 
A и B: A ∩ B = {1, 2, 3, 4, 6, 12}. Итак, у чисел 36 и 60 оказалось 
шесть общих делителей. Понятно, что множество общих натураль-
ных делителей двух любых натуральных чисел не может оказаться 
пустым, так как в этом множестве обязательно будет число 1. Кро-
ме того, это множество не может быть бесконечным, так как мно-
жество делителей любого натурального числа конечно. Имея 
в распоряжении эти два факта о множестве общих делителей двух 
любых натуральных чисел, мы можем утверждать, что в этом мно-
жестве есть наибольший элемент. Наибольший элемент  множества  
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общих делителей двух натуральных чисел a и b называется наи-
большим общим делителем натуральных чисел a и b и обозначает-
ся НОД (a, b). В нашем примере НОД (36, 60) = 12.

Рассмотрим теперь некоторые свойства НОД (a, b). Начнем 
с простейших.

Теорема 4.13. Для любого натурального числа a НОД (a, a) = a.
Теорема 4.14. Для любого натурального числа a НОД (a, 1) = 1.
Теорема 4.15. Для любых натуральных чисел a и b, если ab, то 

НОД (a, b) = b.
Доказательство этих теорем мы предлагаем провести читателю 

самостоятельно в качестве упражнения.
В теореме 4.14 мы рассмотрели случай, когда наибольший 

общий делитель двух натуральных чисел равен 1. Такая ситуа-
ция возможна и не только в тех случаях, когда одно из чисел рав-
но 1. Например, если рассмотреть два различных простых числа 
p и q, то НОД (p, q) = 1. Доказать это не составляет большого 
труда. Достаточно вспомнить, какие натуральные делители есть 
у простого числа. Но можно привести пример и составных чи-
сел, наибольший общий делитель которых равен числу 1. Так, 
легко установить, что НОД (8, 9) = 1. Пары натуральных чисел, 
наибольший общий делитель которых равен числу 1, называются 
взаимно простыми. В теории делимости они играют очень важ-
ную роль. Приведем такой пример. Если некоторое натуральное 
число делится на числа 3 и 4, то это число обязательно делится 
на их произведение – число 12. Если некоторое натуральное чи-
сло делится на числа 2 и 6, то это число не обязано делиться на их 
произведение – число 12. Почему при очень похожих условиях 
выводы получаются принципиально различные. Все дело в том, 
что числа 3 и 4 являются взаимно простыми, а числа 2 и 6 взаим-
но простыми не являются. Попробуйте объяснить, почему нали-
чие того, что числа являются взаимно простыми, оказывает такое 
влияние на делимость.

В заключение этого параграфа приведем еще одну очень важ-
ную теорему.

Теорема 4.16. Если НОД (a, b) = d, то НОД (a:d, b:d) = 1 (для лю-
бых натуральных чисел a и b).
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Примем эту теорему без доказательства. При желании с до-
казательством можно ознакомиться в п. 10.30 работы [1]. А вот 
один из примеров ее применения приведем. Школьникам хо-
рошо известна такая задача: сократите данную обыкновенную 
дробь a / b до несократимой. Чтобы это сделать, достаточно (со-
гласно теореме 4.16) разделить числитель и знаменатель этой 
дроби на НОД (a, b).

4.11. НАИМЕНЬШЕЕ ОБЩЕЕ КРАТНОЕ

Рассмотрим два натуральных числа. Для примера возьмем числа 
4 и 7. Далее найдем все натуральные кратные этих чисел. Пусть A – 
это множество всех натуральных кратных числа 4, а B – множество 
всех натуральных кратных числа 7. Легко понять, что во множест-
во A будут входить числа 4, 8, 12, 16, 20 и т.д., т.е. все натуральные 
числа вида 4n, где n – произвольное натуральное число. Аналогич-
но во множество В будут входить числа 7, 14, 21, 28, 35 и т.д., т.е. 
все натуральные числа вида 7k, где k – произвольное натуральное 
число. Найдем теперь все общие кратные чисел 4 и 7. Для этого 
нам нужно найти пересечение множеств C и D. Так как множества 
C и D являются бесконечными, то описать сразу их пересечение 
не такая простая задача, как задача по описанию множества об-
щих делителей из предыдущего параграфа. Но указать одно общее 
кратное мы сможем без особого труда. Хорошо известно, что про-
изведение двух чисел всегда делится на каждый свой множитель. 
Поэтому число 28 (4 · 7 = 28) является общим кратным чисел 4 и 7, 
т.е. число 28 – это элемент множества C∩D. Легко понять, что чи-
сла вида 28 · m, где m – произвольное натуральное число, также 
являются общими кратными чисел 4 и 7. С помощью этого приме-
ра мы фактически доказали, что множество общих кратных любых 
двух натуральных чисел не может быть пустым. А это означает, 
что в таком множестве есть наименьший элемент (любое непустое 
множество натуральных чисел имеет наименьший элемент). Этот 
наименьший элемент и называется наименьшим общим кратным 
двух данных натуральных чисел a и b. Обозначается это число 
с помощью соответствующей аббревиатуры: НОК (a, b).
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Понятие наименьшего общего кратного двух натуральных чи-
сел знакомо всем школьникам в виде наименьшего общего знаме-
нателя при сложении или вычитании обыкновенных дробей.

Рассмотрим простейшие свойства НОК (a, b).
Теорема 4.17. Для любого натурального числа a НОК (a, a) = a.
Теорема 4.18. Для любого натурального числа a НОК (a, 1) = a.
Теорема 4.19. Для любых натуральных чисел a и b, если ab, то 

НОК (a, b) = a.

4.12. НАХОЖДЕНИЕ НОД И НОК ДВУХ ЧИСЕЛ 
С ПОМОЩЬЮ КАНОНИЧЕСКИХ РАЗЛОЖЕНИЙ

Если мы знаем каноническое разложение двух данных чисел, 
то это очень упрощает решение вопроса о нахождении НОД и НОК 
этих чисел. Покажем это на примере.

Пусть нам известны канонические разложения чисел 6600 
и 24 500. Запишем эти канонические разложения и сконструируем 
с их помощью НОД и НОК чисел 6600 и 24 500.

Итак, 6600 = 23 · 3 · 52 · 11 и 24 500 = 22 · 53 · 72. Сконструируем 
сначала НОД (6600, 24 500). Так как мы хотим построить общий дели-
тель, то в его разложение должны входить только те простые множи-
тели, которые являются общими для двух данных разложений, т.е. это 
множители 2 и 5 (другие простые множители входить не могут, так 
как тогда нарушится делимость хотя бы одного из двух данных чисел 
на это число). Теперь нужно понять, с какими показателями должны 
войти эти множители в каноническое разложение НОД (6600, 24 500). 
Так как в первое число множитель 2 входит с показателем 3, а во вто-
рое – с показателем 2, то в искомый НОД множитель 2 должен входить 
с показателем, который не превышает эти два показателя и является 
максимально возможным с таким ограничением. Этому требованию 
удовлетворяет минимальный из двух имеющихся показателей, т.е. 
показатель 2 (min(3; 2) = 2). Аналогично решается вопрос и для мно-
жителя 5. Этот множитель входит с показателем min(2, 3) = 2. Таким 
образом, НОД (6600, 24 500) = 22 · 52 = 100.

Сконструируем теперь НОК (6600, 24 500). Прежде всего, обра-
тим внимание на тот факт, что в каноническое разложение любого об-
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щего кратного обязательно должны входить все простые множители, 
которые присутствуют в разложении как одного числа, так и другого 
(если какой-то из этих множителей будет отсутствовать, то нарушит-
ся требование делимости этого числа на хотя бы одно из двух данных 
чисел). При этом показатель степени данного простого множителя 
не может быть меньше показателя степени этого простого множи-
теля, с которым он входит в разложение хотя бы в одно из данных 
чисел. Очевидно, что в разложение общего кратного могут «допол-
нительно» входить другие простые множители, но при конструиро-
вании наименьшего общего кратного они нам не потребуются, так 
как будут противоречить идее минимальности. Таким образом, нам 
стало понятно, что в каноническое разложение НОК (6600, 24 500) 
должны входить простые множители 2, 3, 5, 7, 11. Теперь разберемся 
с показателями степени для этих множителей. Множитель 2 входит 
в каноническое разложение числа 6600 с показателем 3, а в кано-
ническое разложение числа 24 500 – с показателем 2. Это означа-
ет, что в каноническое разложение НОК этих чисел множитель 2 
должен входить с показателем 3, т.е. с максимальным показателем 
из двух имеющихся (max(3; 2) = 3). Аналогичным образом находятся 
показатели для других простых множителей. В итоге получается, что 
НОК (6600, 24 500) = 23 · 3 · 53 · 72 · 11 = 1 617 000.

4.13. НЕКОТОРЫЕ СВОЙСТВА НОД И НОК ДВУХ ЧИСЕЛ

В этом параграфе мы установим связь между произвольным об-
щим делителем и наибольшим общим делителем двух данных чи-
сел, а также между произвольным общим кратным и наименьшим 
общим кратным двух данных чисел.

Теорема 4.20. Наибольший общий делитель любых двух нату-
ральных чисел a и b делится на любой их общий делитель d.

Доказательство. Для доказательства достаточно сопоставить 
мультипликативную структуру НОД (a, b) и произвольного общего 
делителя этих чисел числа d. В предыдущем параграфе мы уста-
новили, что любой общий делитель двух данных чисел в своем 
разложении не должен иметь других простых множителей, кроме 
общих для канонического разложения этих чисел. Пусть это будут 
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простые множители p, q, …, r. Тогда любой общий делитель может 
быть записан в виде pα · qβ · … · rγ. При этом НОД (a, b) получается 
тогда, когда каждый из показателей α, β, …, γ принимает макси-
мально возможное значение. Значит, у произвольного общего де-
лителя d ни один показатель не может превысить соответствую-
щего максимального значения, которое имеется у этого показателя 
в НОД (a, b). По определению отношения делимости получаем, 
что НОД (a, b) делится на d. Теорема доказана.

Пример. В п. 4.10 мы установили множество общих де-
лителей для чисел 36 и 60. Это числа 1, 2, 3, 4, 6, 12. При этом 
НОД (36; 60) = 12. Очевидно, что НОД (36; 60) делится на любой 
общий делитель.

Теорема 4.21. Любое общее кратное k любых двух натуральных 
чисел a и b делится на наименьшее общее кратное этих чисел.

Замечание. Доказательство теоремы 4.21 можно провести 
аналогично тому, как мы провели доказательство теоремы 4.20. 
Но есть и другое доказательство этой теоремы, которое мы хотели 
бы привести.

Доказательство. Разделим с остатком общее кратное k 
на НОК (a, b). Обозначим получившийся остаток через r. По опре-
делению деления с остатком выполняется двойное неравенство 
0 ≤ r < НОК (a, b). Учитывая, что числа k и НОК (a, b) делятся и на a, 
и на b, легко установить (опираясь на теоремы о делимости произве-
дения и о делимости разности), что на числа a и b делится число r. 
Это означает, что число r является общим кратным (не обязательно 
натуральным) для чисел a и b. Но натуральное общее кратное чисел 
a и b не может быть меньше, чем наименьшее общее кратное этих 
чисел (а выше мы установили, что r < НОК (a, b)). Поэтому число 
r не является натуральным, т.е. r = 0. Таким образом, мы доказали, 
что k делится на НОК (a, b) нацело. Теорема доказана.

4.14. ОСНОВНОЕ СВОЙСТВО НОД И НОК ДВУХ ЧИСЕЛ

В этом параграфе мы рассмотрим свойство, которое связывает 
между собой наибольший общий делитель и наименьшее общее 
кратное двух данных чисел. При доказательстве соответствующей 
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теоремы мы будем опираться на основную теорему арифметики, 
которая позволяет из канонических разложений множителей легко 
получить каноническое разложение произведения. Например, если

a = 23 · 52 · 11 и b = 34 · 53 · 11 · 172, 
то a · b = 23 · 34 · 52 + 3 · 111 + 1 · 172 = 23 · 34 · 55 · 112 · 172.
Теорема 4.22. (Основное свойство НОД и НОК двух чисел).
Для любых двух натуральных чисел a и b справедливо равен-

ство
 a · b = НОД (a, b) · НОК (a, b). (4.8)

Доказательство. Пусть у нас имеется два произвольных нату-
ральных числа a и b, и мы знаем их канонические разложения. Пе-
речислим все простые множители, которые входят хотя бы в одно 
из этих канонических разложений, обозначив их следующим обра-
зом: p, q, …, r. Рассмотрим один из этих множителей. Например, 
множитель p. Для этого множителя справедливо одно и только 
одно утверждение из двух, приведенных ниже:
1) простой множитель p входит в состав канонического разложе-

ния только одного из двух данных чисел a или b;
2) простой множитель p входит в состав канонического разложе-

ния сразу двух данных чисел a и b.
В первом случае множитель p будет входить с некоторым нату-

ральным показателем α не только в состав канонического разложе-
ния только одного из чисел a или b, но и в состав канонического 
разложения их произведения. Другими словами, в каноническое 
разложение левой части равенства (4.8) будет входить множи-
тель pα. Если теперь обратиться к содержанию п. 4.12, то мы можем 
сказать, что в каноническое разложение НОД (a, b) простой мно-
житель p входить не будет, а в каноническое разложение НОК (a, b) 
будет входить с показателем α. Это означает, что в состав канони-
ческого разложения и правой части равенства (4.8) будет входить 
множитель pα.

Во втором случае множитель p будет входить с некоторым на-
туральным показателем α в состав канонического разложения од-
ного из чисел a или b, а с натуральным показателем β – в состав 
канонического разложения другого из этих чисел. Поэтому в ка-
ноническое разложение левой части равенства (4.8) будет входить 
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множитель  pα + β. Если теперь опять обратиться к содержанию п. 4.12, 
то мы можем сказать, что в каноническое разложение НОД (a, b) 
простой множитель p будет входить с показателем min(α, β), а в ка-
ноническое разложение НОК (a, b) – с показателем max(α, β). Таким 
образом, в каноническое разложение и правой части равенства (4.8) 
будет входить тот же множитель: pmin(α, β) + max(α, β) = pα + β.

Итак, мы установили, что в канонических разложениях левой 
и правой частей равенства (4.8) имеет место полное совпадение 
той составляющей, которая определяется простым множителем p. 
Аналогично можно доказать, что такое же совпадение имеет место 
и для других простых множителей q, …, r. Таким образом, канони-
ческие разложения левой и правой частей равенства (4.8) полно-
стью совпадают. Значит, равенство (4.8) является верным. Теорема 
доказана.

Замечание. В формуле (4.8) участвуют четыре натуральных чи-
сла: a, b, НОД (a, b) и НОК (a, b). Если нам известны три из этих 
четырех чисел, то с помощью формулы (4.8) не составляет труда 
вычислить четвертое число. В частности, это означает, что искать 
решение двух разных задач (нахождения НОД (a, b) и нахожде-
ния НОК (a, b)) совсем не обязательно. Достаточно уметь решать 
одну из них. Тогда решение второй можно найти по формуле (4.8). 
В следующем параграфе мы рассмотрим алгоритм, который позво-
ляет достаточно быстро и просто находить НОД (a, b). А значит, 
и при нахождении НОК (a, b) мы сначала можем воспользоваться 
этим алгоритмом, а уже потом формулой (4.8).

Замечание. Из формулы (4.8) следует, что для взаимно простых 
чисел a и b их наименьшее общее кратное равно их произведению 
(НОК (a, b) = a · b). А этот факт позволяет обосновать следующее 
утверждение: если некоторое число делится на два числа, которые 
являются взаимно простыми, то это число делится и на их про-
изведение. Например, если некоторое число делится на 3 и на 4 
(числа 3 и 4 являются взаимно простыми), то оно делится на их 
произведение, т.е. на 12. Для обоснования этого утверждения нуж-
но еще вспомнить, что любое общее кратное двух чисел делится 
на их наименьшее общее кратное. (Строгое доказательство этого 
утверждения мы предлагаем провести самостоятельно.) С помо-
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щью рассмотренного в этом замечании утверждения можно кон-
струировать признаки делимости на некоторые составные числа. 
Например, признак делимости на 18 можно сформулировать сле-
дующим образом: если последняя цифра десятичной записи дан-
ного числа является четной, а сумма цифр этой десятичной записи 
делится на 9, то данное число делится на 18 (учитывая, что числа 2 
и 9 являются взаимно простыми, мы получаем возможность соеди-
нить в признаке делимости на 18 признаки делимости на 2 и на 9).

4.15. АЛГОРИТМ ЕВКЛИДА НАХОЖДЕНИЯ НОД ДВУХ 
ЧИСЕЛ

В заключительном параграфе данной главы мы рассмотрим ал-
горитм, который позволяет находить наибольший общий делитель 
двух произвольных натуральных чисел, не прибегая к разложению 
на простые множители. Этот алгоритм основан на делении с остат-
ком и носит имя уже неоднократно упомянутого нами величайшего 
древнегреческого математика Евклида.

Для обоснования этого алгоритма нам потребуется два утверж-
дения. Во-первых, это свойство НОД двух чисел, сформулиро-
ванное в теореме 4.15. Во-вторых, лемма, которую мы сейчас до-
кажем.

Лемма 4.1. Пусть при делении с остатком натурального числа 
a на натуральное число b получается ненулевой остаток r. Тогда 
НОД (a, b) = НОД (b, r).

Доказательство. По условию a = b · q + r, где q и r – целые 
неотрицательные числа, причем 0 < r < b. Из записанного выше ра-
венства и свойств делимости (делимость суммы, разности и про-
изведения) следует, что любой общий делитель чисел a и b будет 
также общим делителем чисел b и r. И наоборот, любой общий 
делитель чисел b и r будет общим делителем чисел a и b. Таким 
образом, мы установили, что множество общих делителей чисел 
a и b равно множеству общих делителей чисел b и r. А это, в свою 
очередь, означает, что равны наибольшие элементы этих множеств 
(если говорить строго, то речь идет об одном и том же множестве). 
Поэтому НОД (a, b) = НОД (b, r). Лемма доказана.
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Сформулируем теперь сам алгоритм Евклида нахождения 
НОД (a, b).

Пусть нам даны два натуральных числа a и b, для которых нуж-
но найти их наибольший общий делитель. Для решения этой зада-
чи будем действовать следующим образом.

1. Разделим число a на число b с остатком. Пусть в остатке по-
лучается число r.

Если r = 0, то по теореме 4.15 получаем, что НОД (a, b) = b. 
Задача решена.

Если r > 0, то по лемме 4.1 получаем, что НОД (a, b) = НОД (b, r).
2. Разделим число b на число r с остатком. Пусть в остатке по-

лучается число r1.
Если r1 = 0, то по теореме 4.15 получаем, что НОД (b, r) = r. 

А с учетом пункта 1 данного алгоритма НОД (a, b) = r. Задача ре-
шена.

Если r1 > 0, то рассуждаем как в соответствующем слу-
чае пункта 1 данного алгоритма и получаем, что НОД (a, b) = 
= НОД (b, r) = НОД (r, r1).

3. Повторяем все, что мы делали в пункте 2 для чисел b и r, уже 
для чисел r и r1, потом (если потребуется) для чисел r1 и r2 и т.д. 
Этот процесс обязательно завершится результативно, так как це-
лые неотрицательные числа b, r, r1, r2, … строго убывают, что га-
рантирует появление числа 0 среди остатков от деления на опреде-
ленном шаге (может быть уже на первом). А появление нулевого 
остатка останавливает выполнение алгоритма, так как задача ста-
новится решенной.

Приведем пример применения алгоритма Евклида для нахож-
дения НОД (2093, 1265).

2093 : 1265 = 1 (ост. 828)
1265 : 828 = 1 (ост. 437)
828 : 437 = 1 (ост. 391)
437 : 391 = 1 (ост. 46)
391 : 46 = 8 (ост. 23)

46 : 23 = 2 (ост 0)
Последний ненулевой остаток и есть искомый наибольший об-

щий делитель, т.е. НОД (2093, 1265) = 23.
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Замечание. При выполнении алгоритма Евклида можно ис-
пользовать привычную запись деления столбиком (уголком).

ЗАДАЧИ К ГЛАВЕ 4

1. Докажите свойства 1) – 5) из п. 4.1.
2. Докажите, что an – bn делится на a – b, при условии, что a, b, 

n – произвольные натуральные числа, причем a > b.
3. Докажите, что an + bn делится на a + b, при условии, что a, b, 

n – произвольные натуральные числа, причем n – нечетное число.
4. Докажите, что при любом натуральном числе n число n3-n 

делится на 6.
5. Докажите, что при любом нечетном натуральном числе n 

число n3-n делится на 24.
6. Докажите, что при любом нечетном натуральном числе n 

число n2 – 1 делится на 8.
7. Докажите, что сумма квадратов двух произвольных нату-

ральных чисел делится на 3 тогда и только тогда, когда каждое 
из этих чисел делится на 3.

8. Делится ли число 1110 – 1 на 10?
9. Докажите, что модуль разности между любым натуральным 

числом и числом, записанным теми же цифрами, но в обратном 
порядке, делится на 9.

10. Докажите, что любое трехзначное число, записанное тремя 
одинаковыми цифрами, делится на 37.

11. Докажите, что если ab + cd делится на a + c, то ad + bc 
делится на a + c, где a, b, c, d – произвольные натуральные числа.

12. Докажите, что сумма 222777 + 777222 делится на 37.
13. Докажите, что число 2626 – 1 делится на 5.
14. Запишите число 1000 в виде суммы двух слагаемых, одно 

из которых делится на 13, а второе – на 53.
15. Докажите, что если из данного натурального числа вы-

честь сумму цифр этого числа, то получится число, которое де-
лится на 9.

16. Докажите, что если у двух натуральных чисел сумма цифр 
одинаковая, то модуль разности этих чисел делится на 9.
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17. Выведите признаки делимости на 2, на 3, на 4 и на 6 в две-
надцатеричной системе счисления.

18. Установите, является ли число 353 простым.
19. Какие из чисел, находящихся между числами 3 628 802 

и 3 628 810 являются простыми?
20. Доказать, что сумма квадратов двух взаимно простых чи-

сел не делится на 3.
21. Укажите десять последовательных натуральных составных 

чисел.
22. Докажите, что если число n является составным, то число 

2n – 1 также является составным.
23. Доказать, что никакое простое число не может быть пред-

ставлено в виде суммы любого числа последовательных нечет-
ных чисел.

24. Докажите, что если произведение двух чисел делится 
на простое число, то хотя бы один из множителей этого произве-
дения делится на данное простое число.

25. Доказать, что любое простое число, которое больше чи-
сла 3, можно записать в виде 6n + 1 или 6n – 1, где n – натураль-
ное число.

26. Доказать, что если простое число больше, чем 3, то его ква-
драт при делении на 24 дает в остатке 1.

27. Доказать, что простых чисел вида 6n – 1 (где n – натураль-
ное число) бесконечно много.

28. Найдите наименьшее общее кратное всех однозначных 
чисел.

29. Докажите, что наименьшее общее кратное двух любых на-
туральных чисел делится на их наибольший общий делитель.

30. Наименьшее общее кратное двух чисел равно 1800, наи-
больший общий делитель этих же чисел равен 75. Найдите одно 
из этих чисел, если другое равно 225.

31. Найдите два натуральных числа, если наибольший общий 
делитель этих чисел равен 24, а их наименьшее общее кратное 
равно 2496. Укажите все варианты ответа.

32. Найдите два натуральных числа, если их произведение 
равно 12 600, а их наименьшее общее кратное равно 6300.
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33. Какое наибольшее число одинаковых букетов можно соста-
вить из 100 белых и 80 красных гвоздик? (Гвоздики одного цвета 
друг от друга не отличаются.)

34. Даны числа 14, 18, 21, 36, 45, 60, 78, 99. Составьте из этих 
чисел всевозможные пары взаимно простых чисел.

35. При каких натуральных значениях n числа вида 2n + 3 и n + 1 
будут взаимно простыми?

36. Найдите натуральное число, которое больше числа 1 и ко-
торое при делении на числа 2, 3, 4, 5, 6, 7, 8, 9 и 10 дает в остатке 
число 1.

37. Доказать, что если число вида 2n + 1 является простым, то n 
является степенью числа 2.

38. Доказать, что если два числа являются взаимно простыми, 
то взаимно простыми будут их сумма и произведение.

39. Доказать, что любое простое число, которое больше числа 2, 
можно представить в виде разности квадратов двух натуральных 
чисел, притом единственным образом.

40. Вычислите с помощью алгоритма Евклида наибольший об-
щий делитель чисел 16 484 и 42 282.
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ГЛАВА 5.
ПОЛОЖИТЕЛЬНЫЕ РАЦИОНАЛЬНЫЕ 

ЧИСЛА КАК ОПЕРАТОРЫ

В педагогической литературе практически не используется ин-
терпретация числа (натурального, целого, рационального, веще-
ственного, комплексного) как оператора, предложенная в [1]. Тем 
самым не только упускается возможность изложить единую точку 
зрения на число, но и возможность сделать это изложение кратким. 
В этой главе мы сосредоточимся на применении операторного под-
хода к построению множества Q+ положительных рациональных 
чисел (глава представляет собой расширенное и переработанное 
изложение заметки [5]).

5.1. НАТУРАЛЬНЫЕ ЧИСЛА КАК ОПЕРАТОРЫ, 
ДЕЙСТВУЮЩИЕ НА СИСТЕМЕ НАПРАВЛЕННЫХ 

ОТРЕЗКОВ
Пусть E – совокупность всех таких направленных отрезков 

на числовой прямой, начало которых совпадает с точкой O (т.е. 
с началом координат).
Суммой двух направленных отрезков OA и OB будем считать 

отрезок OC, получающийся в результате следующего построения. 
Нужно отрезок OB переместить вдоль числовой прямой так, чтобы 
новое положение его начальной точки совпало с точкой A, тогда 
новое положение его концевой точки будет концом направленного 
отрезка OC.

Будем рассматривать произвольное натуральное число n 
как оператор, который удлиняет направленные отрезки (векторы) 
из E в n раз. Далее, каждому натуральному числу p сопоставим 
также оператор p-1, укорачивающий вектора из E в p раз.
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Результат применения операторов n и p-1 к произвольно взятому 
вектору e из Е будем обозначать так:
 ne; p-1e. (5.1)

Записи вида npe, np-1e, ... мы будем понимать как результат по-
следовательного применения соответствующих операторов к век-
тору e.

А именно, 
 npe = n(pe), np-1e = n(p-1e). 

Определение 5.1. Пусть T и S – два действующих на E опера-
тора. Скажем, что эти операторы равны (T = S), если для любого 
вектора e из E Te = Se.

Лемма 5.1. Для любых натуральных n и p справедливы опера-
торные равенства:
 np = pn = (pn); (5.2)
 np-1 = p-1n; (5.3)
 n-1p-1 = p-1n-1 = (pn)-1. (5.4)

Доказательство. Равенства (5.2) геометрически очевидны. Дока-
жем, например, соотношение (5.3). Нетрудно видеть, что равенство
 np-1e = p-1ne 

равносильно равенству
 pnp-1e = pp-1ne. 

Однако в силу (5.2) предыдущее равенство выполняется тогда 
и только тогда, когда
 npp-1e = pp-1ne,  

или, что то же самое, 
 ne = ne. 

Так как последнее равенство, очевидно, верно всегда, то тем са-
мым доказано и соотношение (5.3).

Теорема 5.1. Пусть k, p, t, n – произвольные натуральные числа, 
понимаемые как операторы, действующие на E. Тогда:
 kp-1 = tn-1 тогда и только тогда, когда kn = pt. (5.5)

Доказательство. Равенство kp-1 = tn-1 означает в точности, 
что для любого e из E должно быть
 kp-1e = tn-1e. (5.6)

При каждом фиксированном e равенство (5.6) – это равенство 
двух направленных отрезков, принадлежащих системе E. Растянув 
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эти направленные отрезки в np раз, мы, очевидно, получим новое 
равенство
 npkp-1e = nptn-1e,  (5.6′)

равносильное (5.6). В силу леммы все операторы в обеих частях 
равенства (5.6′) перестановочны между собой. Поэтому в левой 
части (5.6′) можно сократить операторы p и p-1, а в правой части 
(5.6′) – сократить n и n-1. Таким образом, (5.6′) оказывается равно-
сильным следующему равенству векторов:
 kne = pte,  

которое, очевидно, возможно тогда и только тогда, когда
 kn = pt. 

Теорема доказана.
Замечание 1. В школьной математике не говорят об операто-

рах, действующих на вектора, а говорят так: «дробь k / p выра-
жает длину рассматриваемого отрезка при заданной единице 
длины e». Соотношение (5.5) в школьных обозначениях, очевидно, 
будет выглядеть так:
 k / p = t / n тогда и только тогда, когда kn = pt. (5.5′)

Замечание 2. Каждый оператор вида kp-1 (или, что то же самое, 
вида k / p) мы будем называть дробью. Доказанная выше теоре-
ма 5.1 позволяет нам ввести в рассмотрение класс равных дробей, 
такой класс мы будем называть положительным рациональным 
числом. Совокупность всех положительных рациональных чисел 
будем обозначать через Q+.

Замечание 3. Опираясь на теорему о существовании и единст-
венности разложения натурального числа на простые множители, 
покажем, что каждое рациональное число из Q+ может быть пред-
ставлено одной и только одной несократимой дробью, числитель 
и знаменатель которой – натуральные числа. Докажем вначале 
единственность, предположив противное. А именно, допустим, 
что найдутся такие натуральные k, p, t, n, что:
А) k / p = t / n, 
Б) обе дроби k / p и t / n несократимы, 
В) k ≠ t или p ≠ n.
Тогда в силу условия A) справедливо равенство из правой части 

(5.5′). Но
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так как дробь k / p несократима, то никакие простые множите-
ли числа k не могут входить в разложение на простые множители 
числа p. Следовательно, в силу равенства из правой части (5.5′) 
все эти множители (взятые в соответствующих степенях) содер-
жатся в разложении числа t. Аналогичное рассуждение, опираю-
щееся на несократимость дроби t / n, позволяет заключить, что все 
простые множители числа t (взятые в соответствующих степенях) 
входят в разложение числа k. Отсюда, очевидно, следует, что 
 k = t. 

Сокращая теперь в правой части (5.5′) на k, получаем
 n = p. 

Последние два равенства противоречат предположению B). Тем 
самым единственность несократимой дроби в классе равных дро-
бей доказана.
Существование несократимой дроби в классе равных дробей 

очевидным образом следует из теоремы о существовании и един-
ственности разложения натурального числа на простые множители.

5.2. СЛОЖЕНИЕ ДРОБЕЙ И СЛОЖЕНИЕ 
РАЦИОНАЛЬНЫХ ЧИСЕЛ

Пусть  и  – две дроби. Пусть, далее, e – произвольный вектор 
из E.

Тогда e и e – два вектора, также принадлежащих E. Поэтому 
сумма этих векторов, очевидно, определена и принадлежит E.

Остается лишь выяснить, при помощи какого оператора эта 
сумма выражается непосредственно через e.

Имеем в силу доказанного выше Утверждения:
e + e = e + e, 

откуда геометрически очевидно, что

  
e + e = e. (5.7)

Так как вектор e из системы E был взят произвольным, то (5.7) 
задает соответствие между множеством упорядоченных пар дро-
бей и множеством дробей:

 ( ; ) → . (5.8)
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Это соответствие принято называть правилом сложения дробей 
и записывать в виде:

  
 +  = . (5.8′)

Замечание 1. Существенно, что мы не вводим волевым образом 
операцию сложения дробей, а всего лишь даем название соответ-
ствию (5.8), которое возникает само естественным образом.

Замечание 2. Хотя в (5.8′) формально участвуют дроби, 
а не классы равных дробей, фактически (5.8′) представляет собой 
правило сложения рациональных чисел, заключающееся в следу-
ющем.
Чтобы сложить два положительных рациональных числа, нуж-

но в каждом из соответствующих классов равных между собой 
дробей выбрать по одной дроби и воспользоваться правилом (5.8′).

Заметим, что проверять корректность этого определения, т.е. 
независимость результирующего оператора от выбора конкрет-
ных дробей из соответствующих классов не нужно. Действитель-
но, замена дробей в левой части (5.7) на любые равные им дроби, 
очевидно, не меняет результирующего вектора. Следовательно, 
результирующая дробь в правой части (5.7) обязана замениться 
при этом на дробь, равную (kn + pt) / pn. 

Замечание 3. Пусть p / n – произвольно взятая дробь. Нам бу-
дет удобно ввести обозначение {p / n}для соответствующего клас-
са равных между собой дробей, т.е. для соответствующего числа 
из Q+. В этих обозначениях правило сложения положительных ра-
циональных чисел запишется в виде:

  (5.8′′)

5.3. ОТНОШЕНИЕ «МЕНЬШЕ» НА МНОЖЕСТВЕ Q+ 

Определение 5.2. Пусть k / p и t / n – две дроби. Скажем, что
 k / p < t / n,  (5.9)
если для произвольно взятого вектора e

 kp-1e короче, чем tn-1e. (5.10)
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Попробуем выяснить, при каких условиях на k, p, t, n справед-
ливо соотношение (5.10). Нетрудно видеть, однако, что (5.10) рав-
носильно соотношению
 pnkp-1e короче, чем pntn-1e. (5.11)

В силу перестановочности операторов растяжения и сжатия, 
в левой части (5.11) сокращаются операторы p и p-1, а в правой ча-
сти (5.11) сокращаются операторы n и n-1. В результате (5.10) ока-
зывается равносильным соотношению
 kne короче, чем pte. (5.12)

Однако (5.12), очевидно, выполняется в том и только том слу-
чае, когда kn < pt.

Итак, мы получили следующий результат:
 k / p < t / n тогда и только тогда, когда kn < pt. (5.13)

Замечание. Определение отношения меньше очевидным обра-
зом переносится с дробей на рациональные числа. При этом (5.13) 
приобретает вид:
 {k / p} < {t / n} тогда и только тогда, когда kn < pt. (5.13′)

5.4. ВЫЧИТАНИЕ В Q+ 

Пусть a, b, c – произвольные числа из Q+ такие, что b < a. Опре-
делим в Q+ вычитание как операцию, обратную сложению. А имен-
но, положим по определению:

a – b = c тогда и только тогда, когда a = c + b.
Пусть {k / p} < {t / n}. Тогда из приведенного выше определения 

нетрудно вывести, что 

 { } – { } = { }. (5.14)

5.5. УМНОЖЕНИЕ ДРОБЕЙ И УМНОЖЕНИЕ 
РАЦИОНАЛЬНЫХ ЧИСЕЛ

Рассмотрим вектор из Е, получающийся в результате последо-
вательного применения дробей  и  к вектору e. Опираясь на дока-
занную выше теорему 5.1, легко получаем, что



134

Математика и информатика. Часть 2

  
 (  e) = e. (5.15)

Поскольку вектор e в (5.15) произволен, заключаем, что равен-
ство (5.15) задает соответствие между множеством упорядоченных 
пар дробей и множеством дробей:

 ( ; ) → . (5.16)

Это соответствие принято называть правилом умножения дро-
бей и записывать в виде:

  
 ∙  = . (5.17)

Как и в случае сложения, полученное соотношение фактически 
задает правило умножения положительных рациональных чисел:

 { } ∙ { } = { }. (5.17′)

Корректность этого правила (т.е. независимость получающего-
ся оператора от выбора конкретных дробей из соответствующих 
классов) доказывается точно так же, как в случае сложения.

Замечание. Как и в случае сложения, мы не вводим операцию 
умножения дробей волевым образом, а всего лишь даем название 
объективно существующему соответствию (5.16).

5.6. ДЕЛЕНИЕ В Q+ 

Пусть a, b, c – произвольные числа из Q+. Определим в Q+ де-
ление как операцию, обратную умножению. А именно, положим 
по определению:

a : b = c тогда и только тогда, когда a = cb.
Из приведенного выше определения нетрудно вывести, 

что 
 { } : { } = { }. (5.18)
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Из (5.18) и (5.17′) следует, что деление в Q+ фактически сводит-
ся к умножению:

{ } : { } = { } ∙ { }.

Замечание. После того, как операции в Q+ введены, множест-
во положительных рациональных чисел можно считать построен-
ным. Возникает, однако, вопрос: как связано множество натураль-
ных чисел N с только что построенным множеством Q+?

Ответ на этот вопрос таков: сопоставим взаимно-однознач-
ным образом каждому натуральному числу n положительное ра-
циональное число {n / 1}. Нетрудно убедиться в том, что при та-
ком сопоставлении операции в N оказываются согласованы 
с операциями в Q+. Например, сумме натуральных чисел n + m, 
очевидно, должно быть сопоставлено рациональное число 
{(n + m) / 1}, т.е. сумма рациональных чисел {n / 1} + {m / 1}. 
Аналогичным образом доказывается согласованность осталь-
ных арифметических операций в N с соответствующими опера-
циями в Q+.

Теперь мы можем просто-напросто отождествить множество 
натуральных чисел N с подмножеством множества Q+, состоящим 
из рациональных чисел вида {n / 1}.

5.7. СОИЗМЕРИМОСТЬ И НЕСОИЗМЕРИМОСТЬ

Пусть e и f – два отрезка из системы E. Говорят, что эти отрезки 
соизмеримы, если существуют такие натуральные t и n, что 
 te = nf. (5.19)

Соотношение (5.19) можно переписать также в следующем эк-
вивалентном виде:
 f =  e. (5.19′)

Будем считать отрезок e единичным (т.е. будем использовать 
его в качестве мерки), тогда (5.19′) можно прочесть следующим 
образом: мера длины отрезка f при единице измерения e равна t / n. 
Это утверждение записывают также в виде формулы:

me(f) = t / n, 
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или, в более общем виде, 
 me(f) = {t / n}. (5.19'')

Замечание 1. Мы будем говорить также о соизмеримости отрез-
ков e′ и f′, не принадлежащих системе E, если в системе E найдутся 
соответственно равные им отрезки e и f, для которых выполнено 
соотношение (5.19). При этом мы сможем говорить, например, 
о мере отрезка f′ при единице измерения e′.

Замечание 2. Далеко не все отрезки соизмеримы между собой. 
Например, диагональ квадрата не соизмерима с его стороной.

Для простоты, рассмотрим единичный квадрат. (Среди отрез-
ков системы Е, очевидно, найдутся отрезки, равные соответст-
венно стороне этого квадрата и его диагонали.) Будем рассуждать 
от противного и предположим, что мера длины диагонали этого 
квадрата выражается рациональной дробью p / q. Тогда по теореме 
Пифагора должно быть
 12 + 12 = (p / q)2,  

или, что то же самое, 
 2q2 = p2. (5.20)

Однако в разложение на простые множители числа 2q2 двойка, 
очевидно, входит в нечетной степени, тогда как в разложение чи-
сла p2 двойка входит в четной степени. Следовательно, равенство 
(5.20) невозможно. Полученное противоречие доказывает сделан-
ное утверждение.

5.8. АДДИТИВНОСТЬ И МУЛЬТИПЛИКАТИВНОСТЬ 
МЕРЫ В Q+ 

Пусть a и b – два отрезка, соизмеримые с отрезком e (все отрез-
ки считаем принадлежащими системе E):

 a = { }e, b = { }e,  
или, что то же самое, 

 me(a) = { }, me(b) = { }. 

Тогда из (5.7) и (5.8), очевидно, следует, что
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 me(a + b) = { } = { } + { },  

т.е.
 me(a + b) = me(a) + me(b). (5.21)

Свойство (5.21) называется, как мы знаем, аддитивностью 
меры.

Аналогичным образом доказывается мультипликативность 
введенной в Q+ меры. А именно, для произвольных соизмеримых 
друг с другом отрезков a, e, f из системы E имеет место равенство:
 mf(a) = me(a)mf(e). (5.22)

5.9. ДЕСЯТИЧНЫЕ ДРОБИ

5.9.1. Конечные десятичные дроби
Конечная десятичная дробь – это дробь, знаменатель которой 

представляет собой степень числа 10. Например, 

 
, или , или . 

Каждая конечная десятичная дробь может быть записана 
«в строчку» c использованием запятой, отделяющей дробную 
часть числа от целой. Например:

 = (4 ∙ 103 + 2 ∙ 102 + 8 ∙ 10 + 7) / 103 =

= 4 +  +  +  = 4,287.

Запись (конечной) десятичной дроби «в строчку» с использова-
нием запятой мы будем называть стандартной.

Нетрудно видеть, что в стандартной записи конечной десятич-
ной дроби запятая отделяет от правого края столько знаков, какова 
степень десяти в знаменателе исходной обыкновенной дроби.

Нетрудно показать, что сложение и вычитание конечных 
десятичных дробей могут производиться по хорошо извест-
ным нам из главы 2 алгоритмам сложения (и, соответственно, 
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вычитания ) столбиком. При этом соответствующие десятич-
ные стандартные записи должны выравниваться не по право-
му краю (как в случае натуральных чисел), а по запятой. Рас-
смотрим, для определенности, случай сложения. Складывая две 
обыкновенные десятичные дроби по правилу сложения дробей, 
мы должны привести их к общему знаменателю, а затем сло-
жить числители (пользуясь алгоритмом сложения «столбиком» 
для натуральных чисел). Отсюда легко следует сформулирован-
ное выше правило.

Случай вычитания рассматривается аналогично.
Что касается умножения конечных десятичных дробей, то оно 

устроено очень просто.
Пусть A / 10n и B / 10k – две конечные десятичные дроби. Чтобы 

получить их произведение в стандартной записи, нужно перемно-
жить «уголком» числители, а затем в произведении AB отделить 
запятой n + k последних цифр (при необходимости дописывая спе-
реди нужное число нулей).

Пример. Умножим дробь 6 / 1000 = 0,006 на 17 / 100 = 0,17. 
Имеем:
 6 ∙ 17 = 102; 
 0,006 ∙ 0,17 = 0,00102. 

Замечание. Зададим следующий естественный вопрос: какие 
несократимые обыкновенные дроби могут быть представлены 
в виде конечных десятичных дробей?

Ответ на этот вопрос таков: для того, чтобы несократимая 
дробь M / N могла быть представлена в виде конечной десятичной 
дроби, необходимо и достаточно, чтобы в разложение на про-
стые множители знаменателя N этой дроби не входили никакие 
простые числа, отличные от 2 и 5.

Например, дробь 3 / 7 не может быть представлена в виде ко-
нечной десятичной дроби.

Действительно, предположим противное, а именно, что
 3 / 7 = A / 10n,  

где A и n – натуральные числа. Тогда должно было бы выпол-
няться равенство
 3 ∙ 2n ∙ 5n = 7 ∙ A,  
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однако последнее равенство невозможно, так как 7 не входит 
в разложение левой части на простые множители. (В общем случае 
доказательство сделанного утверждения аналогично.)

В то же время, например, 
 3 / 8 = 3 ∙ 53 / 23 ∙ 53 = 375 / 1000. 

Заметим, что, в отличие от рассмотренных выше операций, де-
ление одной конечной десятичной дроби на другую, вообще гово-
ря, выводит нас за рамки класса конечных десятичных дробей.

Например, 
 3 / 10 : 7 / 10 = 3 / 7. 

5.9.2. Бесконечные периодические десятичные дроби
Рассмотрим теперь в качестве примера процедуру, переводя-

щую обыкновенную дробь 3 / 7 в бесконечную десятичную.
Имеем, последовательно производя деление с остатком:

3 ∙ 10 = 7 ∙ 4 + 2;
2 ∙ 10 = 7 ∙ 2 + 6;
6 ∙ 10 = 7 ∙ 8 + 4;

 4 ∙ 10 = 7 ∙ 5 + 5; (5.23)
5 ∙ 10 = 7 ∙ 7 + 1;
1 ∙ 10 = 7 ∙ 1 + 3;
3 ∙ 10 = 7 ∙ 4 + 2.

Поскольку число различных остатков при делении на 7 конеч-
но, рассмотренная процедура, очевидно, оказывается периодиче-
ской: седьмая строчка совпала с первой, поэтому восьмая строчка 
обязательно совпадет со второй, и т.д.

Разделим теперь первую строчку (5.23) на 10, вторую – на 100, 
третью – на 1000 и т.д., а затем сложим. В результате получим по-
сле сокращений и приведения подобных:

3 = 7 ∙ (  +  +  +  +  +  +...);

отсюда имеем:
 3 / 7 = 0,428571428571… = 0, (428571). (5.24)

(В правой части (5.24) скобками обозначен период получив-
шейся бесконечной десятичной дроби.)
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Теперь нетрудно видеть, что частное от деления конечной деся-
тичной дроби A / 10n на конечную десятичную дробь B / 10k может 
быть представлено в виде стандартной десятичной записи в резуль-
тате следующей процедуры. Вначале находим стандартное десятич-
ное представление обыкновенной дроби A / B, а затем сдвигаем запя-
тую на n – k позиций (влево, если n – k > 0, и вправо, если n – k < 0).

Замечание 1. В главе 2 мы уже познакомились с предметной 
интерпретацией алгоритма деления «уголком», переводящего 
обык новенную дробь в стандартную десятичную запись. В рас-
смотренном выше примере этот алгоритм получил теперь чисто 
арифметическое обоснование.

Замечание 2. Пусть A / B – произвольно взятая обыкновен-
ная дробь. Нетрудно показать, что длина периода ее стандарт-
ной десятичной записи не превышает B – 1. Действительно, бу-
дем для определенности считать, что A / B – правильная дробь. 
Как мы знаем, всего различных остатков при делении на B суще-
ствует ровно B (а именно: 0, 1, 2, ..., B – 1). Если на одном из шагов 
алгоритма деления «уголком», переводящего обыкновенную дробь 
A / B в стандартную десятичную запись, встречается остаток 0, 
то соответствующая десятичная дробь оказывается конечной (по-
скольку все последующие остатки, появляющиеся в этом алгорит-
ме, также будут нулевыми).

Нас же интересуют сейчас бесконечные периодические деся-
тичные дроби. Но если из A / B получается бесконечная десятич-
ная дробь, различными остатками, появляющимися в алгоритме 
деления «уголком», могут быть только 1, 2, ..., B – 1. Отсюда сразу 
следует вышеприведенное утверждение.

Замечание 3. При переводе обыкновенной дроби в стандарт-
ную десятичную запись период может начинаться не сразу после 
запятой. В таких случаях говорят о наличии предпериодической 
части в стандартной десятичной записи. Например:
 1 / 6 = 0,1666666… = 0,1(5.6); 
 4 / 15 = 0,2666666... = 0,2(5.6). 

Можно показать, что предпериодическая часть возникает в том 
и только том случае, когда знаменатель несократимой дроби A / B 
содержит в качестве множителя 2 или 5.
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Замечание 4. Покажем на примере, каким образом из стандарт-
ной десятичной записи можно получить соответствующую обык-
новенную дробь.

Рассмотрим бесконечную периодическую десятичную дробь, 
содержащую предпериодическую часть:
 w = 0,123(4567) = 0,12345674567... (5.25)

Прежде всего, умножим w на 103 (здесь 3 – длина предпериоди-
ческой части дроби w), получим:
 103w = 123,45674567... (5.26)

Затем умножим (5.26) на 104 (здесь 4 – длина периода дроби w), 
получим:
 107w = 1 234 567,45674567... (5.27)

Вычитая теперь (5.26) из (5.27), имеем:
 (107 – 103)w = 1 234 567 – 123; 

отсюда
 w = 1 234 444 / 9 999 000. (5.28)

Замечание 5. Обратимся в заключение к вопросу о том, единст-
венна ли периодическая десятичная запись для (несократимой) ра-
циональной дроби. Прежде всего, заметим, что алгоритм деления 
«уголком» определяет однозначно вид десятичной записи для лю-
бой обыкновенной дроби. Однако существуют бесконечные пери-
одические десятичные записи, которые не могут быть получены 
при помощи алгоритма деления «уголком» и которые должны быть 
отброшены для установления взаимно однозначного соответствия 
между обыкновенными (несократимыми) дробями и их периоди-
ческими десятичными записями.

Речь идет о десятичных записях, в которых присутствует пери-
од, образованный цифрой 9. Такие записи следует заменить конеч-
ными десятичными дробями.

Действительно, суммируя геометрическую прогрессию со зна-
менателем 1 / 10, нетрудно убедиться в том, что
 0,999999..... = 0,(9) = 1; 
 0,123999999... = 0,123(9) = 0,124; 
 17,45999999... = 17,46. 
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ЗАДАЧИ К ГЛАВЕ 5
1. Доказать, что сложение в Q+ коммутативно.
2. Доказать, что сложение в Q+ ассоциативно.
3. Доказать, что отношение «меньше» в Q+ является отношени-

ем строгого линейного порядка.
4. Доказать, что в Q+ не существует наименьшего элемента 

и не существует наибольшего элемента.
5. Доказать, что между двумя любыми элементами из Q+ всегда 

найдется еще один элемент из Q+.
6. Доказать, что сложение в Q+ сократимо и монотонно.
7. Доказать, что вычитание в Q+ определено корректно, т.е. раз-

ность двух элементов из Q+ не зависит от того, какие конкретно 
дроби из соответствующих классов мы выбираем для вычислений.

8. Как связано в Q+ отношение «меньше» с операцией сложения?
9. Доказать, что умножение в Q+ коммутативно и ассоциативно.
10. Доказать, что умножение в Q+ дистрибутивно относительно 

сложения и вычитания.
11. Доказать, что умножение в Q+ сократимо и монотонно.
12. Доказать, что деление в Q+ определено корректно, т.е. част-

ное двух элементов из Q+ не зависит от того, какие конкретно дро-
би из соответствующих классов мы выбираем для вычислений.

13. Отождествим натуральные числа с элементами из Q+ вида 
{n / 1}. Доказать, что при этом отождествлении отношение «мень-
ше», определенное для натуральных чисел, перейдет в отношение 
«меньше» на множестве Q+, связывающее элементы вида {n / 1}.

14. Трое друзей купили попугая. Первый внес 2 / 7 от той суммы, 
что внесли остальные. Второй внес 3 / 8 от той суммы, что внесли 
остальные. А третий внес 1000 рублей. Сколько стоил попугай?

15. Расположить в порядке возрастания дроби
33 / 35, 11 / 13, 5 / 7, 101 / 103.
16. Доказать, что уравнение х2 = 3 не имеет решений в множе-

стве Q+
17. Доказать, что в классе равных дробей {1 / 2} единственной 

несократимой дробью является ½.
18. Расположить в порядке убывания дроби
(1010 + 1) / (1020 + 1); (1010 + 2) / (1020 + 2); (1010 – 1) / (1020 – 1).
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19. У Васи было 11 лепешек, а у Пети – 4. К ним подошел незна-
комец и попросил накормить его. Все ели поровну. Уходя, незнако-
мец оставил 100 рублей. Как эти деньги должны поделить между 
собой Вася и Петя?

20. Требуется разделить 19 яблок поровну между 90 детьми. 
При этом ни одно яблоко не должно быть разрезано больше, чем 
на 10 частей. Как это сделать?

21. Трое друзей купили лодку. Первый заплатил 2 / 5 от того, 
что заплатил второй. А третий заплатил 1 / 7 от того, что заплатили 
первый и второй вместе. Лодка стоила 8000 рублей. Сколько запла-
тил каждый?

22. Требуется разделить 5 груш поровну между шестью детьми. 
При этом ни одна груша не должна быть разрезана больше, чем 
на две части. Как это сделать?

23. Требуется разделить 7 картофелин поровну между шестью 
детьми. При этом ни одна картофелина не должна быть разрезана 
больше, чем на две части. Как это сделать?

24. Несколько рыбаков отправились на рыбалку. Тот, кто пой-
мал наибольшее количество рыб, добыл половину общего улова. 
Тот, кто поймал наименьшее количество рыб, добыл 1 / 5 общего 
улова. Сколько было рыбаков?

25. Четверо студентов отправились за грибами. Иван собрал 
столько же, сколько все остальные, Петр собрал 1 / 5 от того, 
что собрали все остальные. Все собрали разное количество гри-
бов. «Кто-то собрал еще меньше, чем я», – сказал Петр. Был 
ли он прав?

26. Вокруг Южного полюса бегали пингвины. На первый айс-
берг соскочили ¾ от числа всех пингвинов и еще четверть пин-
гвина, а остальные побежали дальше. Затем на второй айсберг 
соскочили ¾ оставшихся пингвинов и еще четверть пингвина, 
а остальные побежали дальше. Наконец, на третий айсберг соско-
чили ¾ оставшихся пингвинов и еще четверть пингвина, после 
чего выяснилось, что все пингвины разместились на трех айсбер-
гах. Сколько было пингвинов?

27. Найти хотя бы одну дробь со знаменателем 29, заключен-
ную между дробями 13 / 14 и 14 / 15.
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ГЛАВА 6.
ЦЕЛЫЕ ЧИСЛА КАК ОПЕРАТОРЫ

Мы уже отмечали в главе 5, посвященной построению множе-
ства положительных рациональных чисел, что в педагогической 
литературе практически не используется интерпретация числа 
как оператора, действующего на пространстве векторов (см. [1]). 
Этот подход пригодится нам и сейчас, при построении множества 
Z целых чисел.

Заметим теперь следующее. Хотя в начальной школе отрицатель-
ные числа не изучаются, современному учителю начальных классов 
необходимо, на наш взгляд, иметь ясное представление о построении 
множества Z и интерпретации арифметических действий на этом 
множестве. В частности, учителю важно понимать, что ряд важней-
ших арифметических правил начальной школы (правило вычитания 
суммы из числа, числа из суммы, разности из числа, числа из разно-
сти, разности из суммы, суммы из разности) оказывается ненужным 
уже в средней школе, после ознакомления детей с отрицательными 
числами и соответствующими арифметическими законами.

Таким образом, встает неизбежный вопрос о том, с какой ин-
терпретацией целых чисел следует знакомить будущего учителя 
начальных классов. Таких интерпретаций существует несколь-
ко. Например, древние индусы понимали отрицательное число 
как «долг». В простейших примерах эта интерпретация прекрасно 
работает. Но почему, например, 

долг (долга в 100 рублей) = 100 рублей, 
понять трудно.
Другая интерпретация множества Z основана на расширении 

множества натуральных чисел таким образом, чтобы операция вы-
читания сделалась всегда выполнимой (при одновременном сохра-
нении важнейших арифметических законов, действующих на мно-
жестве N натуральных чисел).
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Именно этот подход реализован в большинстве современных 
пособий.

Этот подход математически безупречен, однако он представ-
ляется нам чересчур громоздким. К его недостаткам можно 
отнести также отсутствие единой точки зрения на пополнение 
множества натуральных чисел рациональными и целыми отри-
цательными.

Этих недостатков лишена предлагаемая ниже операторная ин-
терпретация множества Z.

6.1. ПРЕДВАРИТЕЛЬНЫЕ СОГЛАШЕНИЯ

Пусть E – совокупность всех таких направленных отрезков 
на числовой прямой, начало которых совпадает с точкой O (т.е. 
с началом координат). Подчеркнем, что рассматриваемые направ-
ленные отрезки могут быть направлены как вправо, так и влево от-
носительно начала координат.

Мы присоединяем к системе E также нулевой направленный от-
резок OO, у которого начало и конец совпадают.

Как и в главе 5, суммой двух направленных отрезков OA и OB 
будем считать отрезок OC, получающийся в результате следую-
щего построения. Нужно отрезок OB переместить вдоль числовой 
прямой так, чтобы новое положение его начальной точки совпало 
с точкой A, тогда новое положение его концевой точки будет кон-
цом направленного отрезка OC. Таким образом, суммой двух рав-
ных по величине и противоположно направленных отрезков будет 
нулевой отрезок OO.

Снова будем рассматривать произвольное натуральное число n 
как оператор, который удлиняет направленные отрезки (векторы) 
из E в n раз.

6.2. ОПЕРАТОР «НОЛЬ» И ОПЕРАТОР «–1»

Введем теперь в рассмотрение еще два оператора, с помощью 
которых расширим множество натуральных чисел N (понимаемых 
как операторы, действующие на E) до множества Z целых чисел.
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Оператор «0» по определению действует на произвольный на-
правленный отрезок E из множества E следующим образом:

0е = OO
(т.е. оператор «0» превращает любой направленный отрезок 

в нулевой).
Что касается оператора «-1», то он по определению меняет на-

правление любого отрезка e из E на противоположное.

6.3. ПРОТИВОПОЛОЖНЫЕ ЧИСЛА. ОПРЕДЕЛЕНИЕ 
МНОЖЕСТВА ЦЕЛЫХ ЧИСЕЛ

По общепринятому в математике соглашению, произведение 
операторов – это их последовательное применение. Таким обра-
зом, для любого оператора n  N имеем:

0n = 0.
Для произведения (-1)n мы для краткости письма введем спе-

циальное обозначение «-n». Таким образом, для любого операто-
ра n  N имеем:

-n = (-1)n.
Числа n и (-n) мы будем называть противоположными.
Нетрудно видеть также, что для любого n из N

(-1)(-1)n = n.
Обозначим теперь совокупность операторов {–1, –2, –3, …} че-

рез N- и определим, наконец, множество Z целых чисел как сово-
купность операторов, действующих на множестве Е:

Z = N-  {0}  N.
Замечание. Два оператора p и q, действующие на направлен-

ные отрезки из системы E, мы считаем равными (и пишем p = q), 
если для любого e  E справедливо pe = qe.

6.4. УМНОЖЕНИЕ В Z

Нетрудно видеть, что умножение в Z (понимаемое как последо-
вательное применение операторов) определено однозначно.

Геометрически очевидно также, что умножение в Z коммутатив-
но. Что касается ассоциативности умножения в Z, то, как мы уже 
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отмечали выше, она имеет место в силу ассоциативности умно-
жения вообще любых операторов (если умножение понимается 
как их последовательное применение).

Отсюда сразу же следует важный результат.
Теорема 6.1. (О важнейших свойствах операции умножения 

в Z).
Пусть m и n – произвольные натуральные числа. Тогда:

1) (–m)n = m(–n) = –mn;
2) (–m)(–n) = mn;
3) 0m = 0(–m) = 0.
Следующий результат важен для доказательства единственно-

сти деления в Z.
Теорема 6.2. (О сократимости умножения в Z). Пусть e – про-

извольный, ненулевой отрезок из Е; p, q и r – произвольные целые 
числа (понимаемые как операторы), причем p ≠ 0. Тогда если

p(qe) = p(re), 
то

qe = re, или, что то же самое, q = r.
Доказательство геометрически очевидно.

6.5. ДЕЛЕНИЕ В Z

Сейчас нам будет удобно ввести понятие модуля целого числа 
(обозначается при помощи двух вертикальных черточек).

Пусть n  N. Тогда по определению
|n| = n;
|-n| = n;

кроме того, по определению считаем, что
|0| = 0.

Что касается операции деления в Z, то она вводится как опера-
ция, обратная умножению. Можно показать, что справедлива сле-
дующая

Теорема 6.3. (О свойствах деления в Z). Пусть p и q – ненуле-
вые элементы из Z. Тогда модуль их частного (вычисленного в Z) 
равен частному от деления их модулей (вычисленному в N), т.е.

|p : q| = |p| : |q|
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(предполагается, что частное в правой части последней фор-
мулы существует в N).
При этом знак частного p: q будет положителен, если знаки p 

и q одинаковы, и отрицателен, если знаки p и q разные.
Для произвольного ненулевого p  Z

0 : p = 0.
Делить на 0 нельзя (деление на ноль не определено).
Замечание. Из сократимости умножения сразу же следует 

единственность частного в Z (если это частное существует). Под-
черкнем, что (вычисленное в Z) частное p : q существует тогда 
и только тогда, когда существует вычисленное в N частное |p| : |q|.

6.6. СЛОЖЕНИЕ В Z

Прежде всего, заметим, что операция сложения направленных 
отрезков в Е коммутативна и ассоциативна (докажите!).

Пусть теперь е – произвольный направленный отрезок из си-
стемы Е; m и n – произвольные целые числа (т.е. операторы из Z). 
Нетрудно видеть, что сумма отрезков me + ne всегда представима 
в виде se, где s  Z. Число s мы будем называть суммой чисел m и n 
и писать:

s = m + n.
Итак, мы определили операцию сложения для чисел из Z.
Замечание. Из коммутативности и ассоциативности сложения 

направленных отрезков системы E сразу следует коммутатив-
ность и ассоциативность сложения в Z (докажите!).

Справедлива следующая
Теорема 6.4. (О свойствах сложения в Z). Пусть m и n – произ-

вольные натуральные числа. Тогда
1) сумма m + n, вычисленная в Z, совпадает с суммой m + n, вы-

численной в N;
2) m + (–n) = m – n, если m > n (при этом разность m – n понима-

ется как разность натуральных чисел;
3) m + (–m) = 0;
4) m + (–n) = – (n – m), если m < n (разность n – m понимается 

как разность натуральных чисел);
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5) сложение с нулем произвольного целого числа не изменяет 
этого числа;

6) сложение в Z сократимо, т.е. для любых трех целых чисел p, 
q, r из равенства p + q = p + r следует, что q = r.
Доказательство этой теоремы геометрически очевидно, и мы 

его предоставляем читателю.

6.7. ВЫЧИТАНИЕ В Z

Вычитание в Z мы определим как операцию, обратную сложе-
нию. Иными словами, разность целых чисел p и q равна r тогда 
и только тогда, когда

p = r + q.
Нетрудно проверить, что разность чисел p и q равна p + (–q). 

Действительно, нетрудно проверить, опираясь на свойства сложе-
ния в Z, что

p = [p + (–q)] + q.
Замечание. Итак, операция вычитания в Z свелась к сложению 

с противоположным числом:
p – q = p + (–q).

Это замечание позволяет (с опорой на коммутативность и ассо-
циативность сложения) существенно упростить многие выкладки. 
Например, не проводя никаких вычислений, мы можем сразу ска-
зать, что

123 456 789 + 987 654 321 – 123 456 789 – 987 654 321 = 0.

6.8. ДИСТРИБУТИВНОСТЬ УМНОЖЕНИЯ 
ОТНОСИТЕЛЬНО СЛОЖЕНИЯ

Опираясь на теоремы 6.1 и 6.4, а также на дистрибутивность 
умножения относительно сложения и вычитания для натуральных 
чисел, нетрудно показать, что для любых p, q, r  Z справедливо 
соотношение

r(p + q) = rp + rq.
В силу сказанного в предыдущем пункте, дистрибутивность 

умножения относительно вычитания доказывать не нужно.
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Подчеркнем, что знание закона дистрибутивности умножения 
относительно сложения в Z позволяет в некоторых числовых при-
мерах мгновенно получать ответ, избегая громоздких вычислений. 
Например, очевидно, что 
12 345 678 900 – 98 765 432 100 – 25 ∙ (123 456 789 – 987 654 321) ∙ 4 = 0.

6.9. ОТНОШЕНИЕ «МЕНЬШЕ» НА МНОЖЕСТВЕ ЦЕЛЫХ 
ЧИСЕЛ. СВЯЗЬ СО СЛОЖЕНИЕМ

Пусть p и q – два целых числа. Скажем, что p меньше, чем q, 
и будем записывать это в виде

p < q, 
если существует такое натуральное r, что

p + r = q.
Можно показать, что введенное таким образом отношение «мень-

ше» на множестве Z отношением строгого линейного порядка.
Справедливо также следующее легко доказываемое утверж-

дение.
Пусть p и q – два целых числа, причем p < q. Тогда, каково 

бы ни было s  Z, будет справедливо неравенство
p + s < q + s

(сформулированное свойство называют монотонностью сло-
жения).

6.10. ОТНОШЕНИЕ «МЕНЬШЕ» НА МНОЖЕСТВЕ ЦЕЛЫХ 
ЧИСЕЛ. СВЯЗЬ С УМНОЖЕНИЕМ

Справедливо следующее утверждение. Пусть p и q – два целых 
числа, причем p < q. Тогда, если s  N, то 

sp < sq
и

(–s)q < (–s)p.
Доказательство. Докажем, например, справедливость послед-

него неравенства при сделанных предположениях. В силу опреде-
ления отношения «меньше» неравенство p < q означает, что долж-
но существовать натуральное r такое, что
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p + r = q.
Умножая обе части последнего соотношения на (-s) и пользу-

ясь дистрибутивностью умножения относительно сложения, по-
лучаем:

(–s)p + (–s)r = (–s)q.
Прибавляя к обеим частям полученного равенства произведе-

ние sr и снова пользуясь дистрибутивностью умножения относи-
тельно сложения, получаем:

(–s)p = (–s)q + sr, 
откуда и следует, что (–s)q < (–s)p.

ЗАДАЧИ К ГЛАВЕ 6

1. Вдоль горизонтальной прямой линии через равные проме-
жутки расположены кочки. Все кочки занумерованы по порядку. 
А именно: кочки, расположенные правее кочки с номером 0, име-
ют номера 1, 2, 3, ... ; кочки, расположенные левее нулевой кочки, 
имеют номера –1, –2, –3, ... . На нулевой кочке сидит заяц. Вначале 
он прыгает 10 раз направо (каждый раз на соседнюю кочку), потом 
30 раз налево, после чего еще 50 раз направо. На кочке с каким 
номером окажется заяц в результате?

2. Вдоль горизонтальной прямой расположены кочки. Однако 
на этот раз расстояния между соседними кочками все различны 
и кочки не занумерованы. Заяц, сидящий на некоторой выделенной 
кочке A, прыгает сначала 47 раз налево (каждый раз на соседнюю 
кочку), а затем 100 раз направо (тоже каждый раз на соседнюю коч-
ку). В результате заяц оказывается на некоторой кочке, которую 
обозначим через B.

После чего заяц возвращается на исходную кочку A и прыга-
ет сначала 100 раз направо, а затем 47 раз налево. Обязательно 
ли заяц окажется в результате снова на кочке B?

3. На плоскости вдоль большой окружности расположены коч-
ки. Расстояния между соседними кочками все различны. Заяц, си-
дящий на некоторой выделенной кочке A, прыгает сначала 47 раз 
по часовой стрелке (каждый раз на соседнюю кочку), а затем 
100 раз против часовой стрелки (тоже каждый раз на соседнюю 



153

Глава 6. Целые числа как операторы

кочку). В результате заяц оказывается на некоторой кочке, которую 
обозначим через B.

После чего заяц возвращается на исходную кочку A и прыгает 
сначала 100 раз против часовой стрелки, а затем 47 раз по часовой 
стрелке. Обязательно ли заяц окажется в результате снова на коч-
ке B?

4. Вдоль горизонтальной прямой линии через равные промежут-
ки расположены кочки. Все кочки занумерованы целыми числами 
(см. задачу № 1). На нулевой кочке сидит заяц. Вначале он прыгает 
10 раз направо (каждый раз перепрыгивая через одну кочку), потом 
30 раз налево (каждый раз перепрыгивая через две кочки). На коч-
ке с каким номером окажется заяц в результате?

5. Вдоль горизонтальной прямой расположены кочки. Рассто-
яния между соседними кочками все различны и кочки не зануме-
рованы. Заяц, сидящий на некоторой выделенной кочке A, прыгает 
иногда налево (каждый раз на соседнюю кочку), а иногда направо 
(тоже каждый раз на соседнюю кочку). В результате выяснилось, 
что заяц 57 раз прыгал направо и 113 раз налево. Можно ли, опира-
ясь только на эти сведения, однозначно определить кочку, на кото-
рой в результате оказался заяц?

6. Попробуйте придать смысл выражению «долг долга в 100 руб-
лей».

7. Велосипедист с раннего утра едет со скоростью 40 км/ч 
по прямолинейной дороге, проходящей мимо деревни Кукуево. 
В 3 часа дня он уже успел проехать мимо этой деревни и оказался 
на расстоянии 50 км от нее. На каком расстоянии от деревни Куку-
ево находился велосипедист в 7 часов утра?

8. Каждый час температура воздуха повышалась на 3 градуса 
по Цельсию. В 6 часов вечера температура воздуха оказалась рав-
ной 12 градусам. Какова была температура воздуха в 7 часов утра?

9. Горизонтально расположенная дорога имеет форму окруж-
ности. Протяженность дороги 11 км. Человек идет по этой дороге 
со скоростью 6 км/ч. Недавно он миновал автобусную остановку, 
расположенную рядом с дорогой, и сейчас находится на расстоя-
нии 1 км от этой остановки. На каком расстоянии от автобусной 
остановки находился человек 9 часов тому назад?
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10. Упростить:
1 – 3 + 2 – 9 + 4 – 27 + 8 –... + 2100 – 3101.
11. Упростить:
1 – 5 + 2 – 25 + 3 – 125 + 4 – 625 + 5 –... + 100 – 5100.
12. Вдоль горизонтальной прямой линии через равные проме-

жутки расположены кочки, занумерованные целыми числами (см. 
задачу № 1). На нулевой кочке сидит заяц, который время от вре-
мени прыгает либо влево через две кочки, либо вправо через пять 
кочек. Может ли заяц в результате оказаться на кочке с номером 7?

13. На циферблате часовая стрелка указывает на 12. Пете необ-
ходимо перевести часовую стрелку на одно часовое деление впе-
ред. Но по условию задачи ему разрешается переводить часовую 
стрелку либо на три часовых деления назад, либо на пять часовых 
делений вперед. Сможет ли Петя решить поставленную задачу?

14. Контора «Рога и копыта» задолжала коммерческому банку 
«Утешительный» 4 миллиона рублей. При этом банк принимает 
платежи только купюрами по 1 миллиону. Остап Бендер, как руко-
водитель конторы, решил распределить долг поровну между тре-
мя рядовыми сотрудниками конторы путем деления долга на три 
равные части с остатком, а остатком от деления справиться само-
му. Сможет ли Остап, не нарушая законов математики, заработать 
в результате вышеописанного перераспределения долга? Указа-
ние: Остап Бендер может воспользоваться общепринятым опре-
делением деления с остатком целого отрицательного числа на на-
туральное. А именно, пусть a  N-, b  N; тогда по определению 
поделить a на b с остатком – это представить целое отрицательное 
число a в виде

a = bq + r, где q и r – целые, причем 0 ≤ r < b.
15. Три приятеля заняли в банке деньги и купили на эти деньги 

лодку. Первый занял 1 / 6 от того, что заняли остальные, второй 
занял 2 / 5 от того, что заняли остальные, а третий занял в банке 
100 рублей. Какую сумму должны будут банку все три приятеля 
вместе?

16. Портос занял у Атоса 100 луидоров, Арамис занял у Порто-
са 200 луидоров, а Атос занял у Арамиса 300 луидоров.

Кто кому и сколько остался в результате должен?
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17. В большой вазе лежат красные карточки, на каждой 
из которых написано натуральное число «5», а в маленькой 
вазе – зеленые карточки, на каждой из которых написано целое 
отрицательное число «–3». Всего карточек 100, а общая сум-
ма написанных на них чисел равна 92. Сколько было карточек 
каждого типа?

18. Имеются три обруча и семь карточек, с написанны-
ми на них числами. На шести карточках написано число «1», 
а на одной «–3». Расположить обручи и карточки на плоско-
сти так, чтобы все карточки оказались внутри обручей, причем 
сумма чисел внутри каждого обруча равнялась нулю.

19. Имеются три обруча и семь карточек с написанными 
на них числами. На четырех карточках написано число «1», 
а на трех «–1». Расположить обручи и карточки на плоскости 
так, чтобы все карточки оказались внутри обручей, а сумма чи-
сел внутри каждого обруча равнялась нулю.

20. Имеются три обруча и шесть карточек с написанны-
ми на них числами. На трех карточках написано число «1», 
а на трех других «–1». Расположить обручи и карточки на пло-
скости так, чтобы одновременно были выполнены условия: 
а) все карточки оказались внутри обручей; б) произведение чи-
сел внутри каждого обруча равнялось минус единице; в) сумма 
чисел внутри каждого обруча равнялась минус единице.
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ГЛАВА 7.
ВЫРАЖЕНИЯ, РАВЕНСТВА, УРАВНЕНИЯ, 

НЕРАВЕНСТВА

Математический язык так же, как и естественный язык, имеет 
свой алфавит. В алгебре он включает следующие группы знаков 
(символов):
• цифры (для записи чисел);
• буквы латинского алфавита (для обозначения постоянных 

и переменных величин);
• знаки операций (для выполнения действий над числами 

и буквами);
• знаки отношений (для записи равенств, уравнений и нера-

венств);
• скобки (технические знаки, играющие роль знаков препи-

нания).
Подобно тому, как в естественном языке из букв образуют-

ся слова, а из слов – предложения, в алгебре из перечисленных 
выше знаков можно образовывать выражения и равенства или не-
равенства.

Заметим, что не любая последовательность символов имеет 
смысл (например, 3 + 5 : или 4 –), и договоримся в дальнейшем 
такие записи не рассматривать.

7.1. ЧИСЛОВЫЕ ВЫРАЖЕНИЯ

Определение 7.1. Запись, содержащую лишь числа и опера-
ции над ними и, возможно, скобки, будем называть числовым вы-
ражением.

Например, 3 + 7 и 40 – 18 числовые выражения.
Замечание. Каждое число является числовым выражением.
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Замечание. Если выражение содержит несколько операций, 
то оно может содержать скобки, указывающие на последователь-
ность выполнения операций. Например, (3 + 5) ∙ 9 или 3 + (5 ∙ 9). 
Скобки обязательно должны быть парными.

Замечание. Знаки отношений ( > , < , = и др.) не могут быть 
использованы при записи числовых выражений.

Определение 7.2. Число, полученное в результате последова-
тельного выполнения операций, содержащихся в выражении, на-
зывается значением числового выражения.

Так, значением выражения (34 + 6) ∙ 2 является число 80, а зна-
чением выражения 45 – 23 ∙ 2 является число (–1).

Не всякое числовое выражение имеет значение. Примерами чи-
словых выражений, не имеющих значения на множестве действи-
тельных чисел являются: 3 : (4 – 4) и .

Одно и то же числовое выражение может иметь значение на од-
ном множестве и не иметь на другом. Например, выражение 3 – 4 
имеет значение на множестве целых чисел, но не имеет значения 
на множестве натуральных чисел.

Для числовых выражений, содержащих знаки нескольких опе-
раций, порядок вычисления их значений таков:
1. Если в числовом выражении нет скобок и содержатся зна-

ки действий только одной ступени (сложения и вычитания 
или умножения и деления), то принято выполнять операции 
по порядку слева направо. Например, в выражении 60 : 3 ∙ 5 
сначала выполняется деление, а потом умножение. Значение 
данного выражения равно 100.

2. Если в выражении содержатся знаки действий разных ступе-
ней (например, сложения и деления), но нет скобок, то снача-
ла выполняются действия второй ступени, а потом – первой.

 Например, при нахождении значения выражения 12 + 48 : 8 
сначала выполняется деление, а потом сложение. Значение 
этого выражения есть число 18.

3. Если в выражении содержатся скобки, то сначала выполня-
ются действия в скобках, потом (в соответствии с п. 1, 2) дей-
ствия 2-й ступени и в последнюю очередь – действия 1-й сту-
пени.
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Так, в выражении 128 – (43 + 12) + 144 : (6 ∙ 8) сначала скла-
дываем числа в скобках, затем умножаем, потом делим, а далее 
слева направо выполняем действия первой ступени (вычитание 
и сложение). Значением данного выражения является число 76.

Замечание. Если выражение содержит скобки внутри ско-
бок, то сначала выполняют действия во внутренних скобках 
и постепенно продвигаются к внешним.

Пример. Найти значение выражения 
(14 + (48 − (34 – 16 : 8)) − 4) – 1.
Решение. Сначала находим значение выражения (34 – 16 : 8), 

находящегося во внутренних скобках; оно равно 32. Затем нахо-
дим значение следующего выражения в скобках (48 – 32); это 
число 16. И, наконец, переходим к выражению, содержащему 
только одни внешние скобки:

(14 + 16 – 4) – 1. Его значением является число 25.
(14 + (48 − (34 – 16 : 8)) − 4) − 1 = (14 + (48 − 32) − 4) – 1 =
= (14 + 16 − 4) – 1 = 25.
Замечание. Название выражения, содержащего несколько 

различных операций, зависит от того, какая операция выполня-
ется последней. Так, выражение (5 + 3) ∙ 4 называют произведе-
нием, а выражение 5 + 3 ∙ 4 – суммой.

Замечание. Для упрощения записи выражений договорились 
опускать лишние скобки. Например, в выражении ((37 – 15) ∙ 8) 
можно опустить внешние скобки, а выражение (99 : 9) + 41 за-
писать вообще без скобок, так как действие деления и так будет 
выполняться первым.

Определение 7.3. Два числовых выражения считаются рав-
ными, если их значения равны.

В начальной школе учащиеся знакомятся с числовыми вы-
ражениями, находят их значения и решают текстовые задачи, 
оформляя решение в виде числовых выражений.

7.2. ЧИСЛОВЫЕ РАВЕНСТВА

Определение 7.4. Если соединить два числовых выражения 
знаком «=», то получится числовое равенство.
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Определение 7.5. Числовое равенство считается истинным, 
если значения выражений слева и справа совпадают, и ложным 
в противном случае.

Например, числовое равенство 124 + 16 = 280 : 2 – истинно, так 
как значения выражений слева и справа равны числу 140, а число-
вое равенство 34 – 16 = 12 + 18 – ложно, так как значения выраже-
ний слева и справа не совпадают.

Из сказанного выше вытекает, что числовые равенства можно 
рассматривать как высказывания вида a = b, где a и b – числовые 
выражения.

В начальной школе числовые равенства рассматриваются 
именно с этой точки зрения. Свидетельством этого являются фор-
мулировки заданий: «Какие числовые равенства являются верны-
ми, а какие – неверными?»

Числовые равенства обладают рядом свойств. Рассмотрим их 
ниже.

1. Если к обеим частям истинного числового равенства при-
бавить одно и то же число, то получится истинное числовое ра-
венство.

2. Если из обеих частей истинного числового равенства вы-
честь одно и то же число, то получится истинное числовое ра-
венство.

Замечание. К обеим частям истинного числового равенства 
можно прибавить (вычесть) не только число, но и числовое выра-
жение, определенное на рассматриваемом множестве.

3. Если обе части истинного числового равенства умножить 
на одно и то же число, то получится истинное числовое равенство.

4. Если обе части истинного числового равенства разделить 
на одно и то же число, отличное от нуля, то получится истинное 
числовое равенство.

(Предоставляем читателю самостоятельно сформулировать 
условие, при котором обе части истинного числового равенства 
можно умножить (разделить) на одно и то же числовое выра-
жение.)

5. Истинные числовые равенства можно почленно складывать, т.е.
если а = b и с = d, то a + c = b + d.
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6. Истинные числовые равенства можно почленно вычитать, т.е.
если а = b и с = d, то a – c = b – d.
7. Истинные числовые равенства можно почленно перемно-

жать, т.е.
если а = b и с = d, то ac = bd.

7.3. ЧИСЛОВЫЕ НЕРАВЕНСТВА

Определение 7.6. Если соединить два числовых выражения зна-
ком « > » или « < », то получится числовое неравенство.

Примерами числовых неравенств являются: 4 < 8; 45 : 5 > 13 + 4; 
12 < 4.

Числовое неравенство является истинным, если это неравенство 
справедливо для значений соответствующих числовых выражений.

С точки зрения логики числовые неравенства, так же как и чи-
словые равенства, являются высказываниями. Соответственно, 
над ними можно выполнять логические операции.

Дизъюнкцию неравенства а > b (a < b) и равенства а = b принято 
записывать в виде а ≥ b (a ≤ b) и называть нестрогим неравенством, 
а конъюнкцию неравенств а < b и b < c записывать в виде а < b < c 
и называть двойным неравенством.

Пример. Определить значение истинности следующих нера-
венств:

а) 32 – 28 < 45:15; б) 4 ≥ 4; в) 6 < 9 < 8.
Решение. Высказывание а) ложно, так как значение выражения 

слева больше значения выражения справа (4 > 3).
Высказывание б) истинно, так как истинно равенство 4 = 4, а вы-

сказывание в) ложно, так как ложно неравенство 9 < 8.
Числовые неравенства обладают рядом свойств. Рассмотрим их 

ниже.

Свойства числовых неравенств
1–2. Свойства 1 и 2 числовых неравенств аналогичны свойст-

вам числовых равенств.
(Предоставляем читателю возможность сформулировать их 

самостоятельно.)
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3. Если обе части истинного числового неравенства умножить 
(разделить) на одно и то же положительное число и сохранить знак 
неравенства, то получится истинное неравенство.

4. Если обе части истинного числового неравенства умножить 
(разделить) на одно и то же отрицательное число и поменять знак 
неравенства на противоположный, то получится истинное число-
вое неравенство.

Аналогичные утверждения справедливы в случае умножения 
(деления) числового неравенства на числовое выражение, имею-
щее значение.

Пример. Умножить обе части неравенства 3 < 12 на число: а) 5; 
б) –7.

Решение. а) Так как число 5 > 0, то при умножении на него знак 
неравенства сохраняется. В результате получаем: 15 < 60.

б) Так как число –7 < 0, то при умножении на него знак неравен-
ства меняется. В результате получаем: –21 > –84.

7.4. ВЫРАЖЕНИЯ С ПЕРЕМЕННОЙ.
ТОЖДЕСТВЕННО РАВНЫЕ ВЫРАЖЕНИЯ

В математике помимо числовых выражений встречаются также 
буквенные выражения. Например, a + 3; x – 2y; (t + 1) : 5 и др.

Если для каждой буквы указано множество числовых значений, 
которые она может принимать, то ее называют переменной, а бук-
венное выражение – выражением с переменной.

При подстановке вместо переменной ее значений выражение 
с переменной обращается в числовое выражение. Например, 
выражение x – 5 при х = 7 обращается в числовое выражение 
7 – 2.

Определение 7.7. Множество значений переменной х  X, 
при которых выражение f (x) имеет значение, называется областью 
определения выражения f (x).

Замечание. Если при подстановке значения х = а выражение 
с переменной f (x) обращается в числовое выражение, не имеющее 
значения, то говорят также, что при х = а выражение f (x) не имеет 
смысла.
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Замечание. Если специально не указано, значения из како-
го множества может принимать переменная, то обычно имеют 
в виду множество всех действительных чисел.

Например, областью определения выражения 3x – 4 является 
множество всех действительных чисел, а область определения 
выражения  состоит из всех действительных чисел, отличных 
от числа 2, так как при х = 2 получается числовое выражение , 
не имеющее значения.

Замечание. В некоторых случаях область определения может 
быть ограничена условиями задачи. Например, если буквой x обо-
значено количество тетрадей или количество учеников в классе, 
то значениями переменной x являются только натуральные числа.

Замечание. Если буквенное выражение содержит не одну, 
а несколько букв (например, x и y), то его область определения 
состоит из всевозможных пар чисел (а, b), при подстановке кото-
рых вместо переменных x и y соответственно, получится число-
вое выражение, имеющее значение.

Например, область определения выражения 2x – y состоит их 
всех пар действительных чисел, а область определения выраже-
ния  – из всех пар чисел (a, b), где a ≠ b.

Существуют выражения, принимающие одни и те же значения 
при всех допустимых значениях входящих в них букв, например 
x + 3 и 3 + x.

Определение 7.8. Два выражения с одними и теми же пере-
менными и общей областью определения называют тождест-
венно равными, если при любых значениях переменных их соот-
ветствующие значения равны.

Пример. Выяснить, являются ли тождественно равными вы-
ражения:
а) (x + y)(x – y) и x2 – y2; б)  и ; в) y – 1 и x – 1.

Решение. а) Выражения (x + y)(x – y) и x2 – y2 являются тож-
дественно равными, так как они содержат одни и те же пе-
ременные, имеют одну и ту же область определения (R х R) 
и все их соответствующие значения равны (в силу равенства 
x2 – y2 = (x + y)(x – y)).
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б) Выражения  и  имеют разные области определения. Пер-
вое выражение определено при любом значении x, а второе выражение 
не имеет значения при x = 1, поэтому сначала надо выделить их общую 
область определения. Это множество всех действительных чисел, от-
личных от 1. На этом множестве выполняется равенство  = , а зна-
чит, выражения  и  тождественно равны.

Данный пример показывает, что выражения, тождественно рав-
ные на одном множестве, могут не быть тождественно равными 
на другом.

в) Выражения y – 1 и x – 1 не являются тождественно равными, так 
как они содержат разные переменные.

Определение 7.9. Утверждение о тождественном равенстве двух 
выражений называется тождеством, а замена одного выражения 
тож дественно равным ему называется тождественным преобразо-
ванием выражений.

Замечание. С точки зрения логики тождество является высказыва-
нием с квантором общности. Например, ( x  R) (x + 1)2 = x2 + 2x + 1. Од-
нако квантор общности часто опускают и пишут: (x + 1)2 = x2 + 2x + 1.

Примерами тождеств являются свойства сложения и умножения, 
формулы сокращенного умножения и т.д.

Замечание. Истинные числовые равенства являются тождест-
вами.

В начальном курсе математики выполняются тождествен-
ные преобразования только числовых выражений. Они проводят-
ся на основе свойств арифметических операций, изучаемых млад-
шими школьниками. Например, (59 + 47) + 3 = 59 + (47 + 3) или
48 – (20 + 8) = (48 – 8) – 20.

7.5. УРАВНЕНИЯ С ОДНОЙ ПЕРЕМЕННОЙ

Определение 7.10. Если два выражения, из которых хотя бы одно 
содержит переменную, соединить знаком «=», то получится уравне-
ние с одной переменной.

С точки зрения логики уравнения с одной переменной явля-
ются предикатами вида f (x) = g (x), где f (x) и g (x) – выражения 
с переменной.



165

Глава 7. Выражения, равенства, уравнения, неравенства

Замечание. Множества истинности этих предикатов в алгеб-
ре называют множеством решений уравнений.

Определение 7.11. Решением уравнения с одной переменной 
называется всякое значение переменной из области определе-
ния уравнения, при котором это уравнение обращается в истин-
ное числовое равенство.

Решить уравнение – значит найти его множество решений.
Определение 7.12. Уравнения f1(x) = g1(x) и f2(x) = g2(x) на-

зываются равносильными на множестве X, если множества их 
решений на нем совпадают, т.е. T1 = T2.

Например, уравнения 3x – 6 = 0 и  = 1 равносильны на мно-
жестве действительных чисел.

Замечание. Уравнения, которые не имеют решения на задан-
ном множестве, считаются равносильными.

Замечание. Уравнения могут быть равносильными и в слу-
чае, если их области определения не совпадают.

Например, уравнения 2(x + 1) = 0 и x +  = 0 имеют раз-
ные области определения, но одно и то же множество решений: 
T1 = T2 = {–1}.

(Предлагаем читателю убедиться в этом самостоя-
тельно.)

В процессе решения уравнений мы преобразуем их, переходя 
от более сложных к более простым уравнениям, однако при этом 
важно, чтобы в процессе этих преобразований множества их ре-
шений не изменялись.

Рассмотрим далее, какие преобразования уравнений можно 
выполнять, не нарушая их равносильность.

Свойства равносильных уравнений
Свойство 1. Пусть уравнение f (x) = g (x) (1) задано на мно-

жестве X и t (x) – выражение, имеющее значение на всей области 
определения. Тогда уравнение f (x) + t (x) = g (x) + t (x) (2) рав-
носильно уравнению (1) на множестве X.

Замечание. Это свойство можно прочитать так: к обеим частям 
уравнения можно прибавлять одно и то же выражение, имеющее 
значение на всей области определения.
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Доказательство.
Для того, чтобы доказать, что T1 = T2, достаточно убедиться 

в том, что 
Т1  Т2 и Т2  Т1.

1. Пусть a  X является решением уравнения (1). Тогда при под-
становке этого значения переменной в уравнение (1) получим 
верное числовое равенство f (a) = g (a). (*)

Так как выражение t (x) – имеет значение на всей обла-
сти определения, то t (a) есть некоторое число. Следователь-
но, по свойству 1 числовых равенств имеем, что f (a) + t (a) =
= g (a) + t (a) также есть верное числовое равенство. А это озна-
чает, что число a  X является решением уравнения (2) и, следо-
вательно, T1  T2, ч.т.д.

2. Докажем теперь, что T2  T1.
Пусть a  X является решением уравнения (2).
Тогда f (a) + t (a) = g (a) + t (a) также есть верное числовое 

равенство. Вычтем из обеих частей этого равенства выражение 
t (a). В соответствии со свойством 2 числовых равенств получа-
ем, что 

f (a) = g (a) есть истинное числовое равенство. А это означает, 
что число а является решением уравнения (1) и, следовательно, 
T2  T1, ч.т.д.

Следствие 1. К обеим частям уравнения можно прибавлять 
одно и то же число.

Следствие 2. Любое слагаемое, входящее в уравнение, можно 
переносить из одной части в другую с противоположным знаком. 
(Докажите это!)

Свойство 2. Пусть уравнение f (x) = g (x) (1) задано на мно-
жестве X и t (x) – выражение, имеющее значение на всей области 
определения и не обращающееся на нем в нуль. Тогда уравнение 
f (x) ∙ t (x) = g (x) ∙ t (x) (2) равносильно уравнению (1) на множе-
стве X.

Следствие. Обе части уравнения можно умножить на одно 
и то же число, отличное от нуля.

Свойство 3. Пусть уравнение f (x) = g (x) (1) задано на мно-
жестве X и t (x) – выражение, имеющее значение на всей области 
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определения и не обращающееся на нем в нуль. Тогда уравнение 
f (x) : t (x) = g (x) : t (x) (2) равносильно уравнению (1) на множе-
стве X.

Следствие. Обе части уравнения можно разделить на одно 
и то же число, отличное от нуля.

Пример. Решить уравнение (3x + 7) : 2 = 17.
Решение. Умножим обе части уравнения на число 2 (следствие 

из свойства 2): 3x + 7 = 34.
Перенесем число 7 в правую часть уравнения с противополож-

ным знаком (следствие 2 из свойства 1): 3x = 27.
Разделим обе части уравнения на число 3: х = 9 (следствие 

из свойства 2).
(3x + 7) : 2 = 17 ⇔ 3x + 7 = 34 ⇔ 3x = 27 ⇔ x = 9.

Решением последнего уравнения, а значит, и исходного (в силу 
равносильности сделанных преобразований), является число 9.

Замечание. В начальной школе уравнение, как правило, рас-
сматривается как истинное высказывание, содержащее неизвест-
ное число, обозначенное буквой, и решается на основе взаимосвя-
зи между компонентами и результатами действий.

При решении рассмотренной выше задачи ученик будет рас-
суждать так. Неизвестное число находится в делимом; чтобы его 
найти, умножим частное (17) на делитель (2). Получим 3x + 7 = 34.

Теперь неизвестное число находится в первом слагаемом; что-
бы его найти, вычтем из суммы (34) второе слагаемое (7). Тогда 
3x = 27.

В этом уравнении неизвестное число является вторым множи-
телем; найдем его, разделив произведение (27) на известный мно-
житель (3). Получаем, что 

х = 9.
Пример. Решить уравнение ax – 5 = 2a + 3x относительно пе-

ременной х.
Решение. Перенесем в левую часть члены, содержа-

щие переменную х, а в правую – не содержащие х. Получим: 
ax – 3x = 2a + 5. После вынесения х за скобку уравнение пример 
вид: x ∙ (a – 3) = 2a + 5.

Рассмотрим 2 случая, когда a – 3 ≠ 0 и когда a – 3 = 0.
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1) Если a – 3 ≠ 0 (т.е. а ≠ 3), то обе части уравнения можно раз-
делить на a – 3. Отсюда х = .

2) Если a – 3 = 0 (т.е. a = 3), то уравнение примет вид: 
x ∙ 0 = 2 ∙ 3 + 5, или 0 = 11. Так как это равенство ложно, 
то при данном значении параметра a исходное уравнение 
не имеет решения.

Ответ: Если а ≠ 3, то уравнение имеет единственное решение 
х = ;

если a = 3, то уравнение решения не имеет.

7.6. НЕРАВЕНСТВА С ОДНОЙ ПЕРЕМЕННОЙ

Определение 7.13. Предикаты вида f (x) > g (x) или f (x) < g (x), 
где f (x) и g (x) – выражения с переменной, называются неравенст-
вами с одной переменной.

Определение 7.14. Число а  X называется решением неравен-
ства f (x) > g (x), если при х = а данное неравенство обращается 
в истинное числовое неравенство.
Решить неравенство – значит найти множество его решений.
Множество решений простейших неравенств вида a < x < b, 

x ≥ a и др. часто изображают на числовой прямой (см. табл. 7.1).
Таблица 7.1

Вид Вид 
неравенстванеравенства

Обозна-Обозна-
чениечение НазваниеНазвание Изображение числового промежутка Изображение числового промежутка 

на числовой прямойна числовой прямойчислового промежуткачислового промежутка
a ≤ x ≤ b [a; b] числовой 

отрезок

a < x < b (a; b) числовой 
интервал

a < x ≤ b (a; b] числовой 
полу-
интервал

a ≤ x < b [a; b) числовой 
полу-
интервал

x ≥ a [a; + ∞) числовой 
луч
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Вид Вид 
неравенстванеравенства

Обозна-Обозна-
чениечение НазваниеНазвание Изображение числового промежутка Изображение числового промежутка 

на числовой прямойна числовой прямойчислового промежуткачислового промежутка
x ≤ a (–∞; a] числовой 

луч

x > a (a; +∞) открытый 
числовой 
луч

x < a (–∞; a) открытый 
числовой 
луч

Определение 7.15. Два неравенства равносильны на множест-
ве X, если множества их решений на нем совпадают.

Свойства равносильных неравенств
Свойство 1. Пусть неравенство f (x) > g (x) задано на множе-

стве X и t (x) – выражение, имеющее значение при всех x  X. Тог-
да неравенство f (x) + t(x) > g(x) + t (x) равносильно исходному 
на множестве X.

Замечание. Это свойство можно прочитать и так: к обеим ча-
стям неравенства можно прибавлять (из обеих частей неравенства 
можно вычитать) одно и то же выражение с переменной, имеющее 
значение на всей области определения.

Следствие 1. К обеим частям неравенства можно прибавлять 
(из обеих частей неравенства можно вычитать) одно и то же число.

Следствие 2. Любое слагаемое, входящее в неравенство, можно 
переносить из одной части в другую с противоположным знаком.

Свойство 2. Пусть неравенство f (x) > g (x) задано на мно-
жестве X и t (x) – выражение, имеющее значение при всех х  X 
и удовлетворяющее условию (  x  X) t (x) > 0. Тогда неравенство 
f (x) ∙ t (x) > g (x) ∙ t (x) равносильно исходному на множестве X.

Это свойство можно прочитать и так: Обе части неравенства 
можно умножать (делить) на одно и то же выражение с перемен-
ной, принимающее положительное значение на всей области оп-
ределения.

Следствие. Обе части неравенства можно умножить (разделить) 
на одно и то же положительное число.
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Свойство 3. Пусть неравенство f (x) > g (x) задано на множест-
ве X и t (x) выражение, имеющее значение при всех x  X и удов-
летворяющее условию (  x  X) t(x) < 0. Тогда неравенство f (x) ∙
∙ t (x) < g (x) ∙ t (x) равносильно исходному на множестве X.

Иначе говоря, обе части неравенства можно умножать на одно 
и то же выражение с переменной, принимающее отрицательные 
значения на всей области определения, поменяв при этом знак не-
равенства на противоположный.

Следствие. Обе части неравенства можно умножить (разделить) 
на одно и то же отрицательное число, поменяв при этом знак нера-
венства на противоположный.

Замечание. Доказательство свойств равносильных неравенств 
проводится аналогично доказательству свойств равносильных 
уравнений и опирается на свойства истинных числовых нера-
венств.

Пример. Решить неравенство:  ≥ x – 6.
Решение. Опираясь на свойства равносильных неравенств, вы-

полним следующие преобразования:
- умножим обе части неравенства на число 7 (большее 0): 

3 – 2x ≥ 7x – 42;
- перенесем 3 и 7x из одной части неравенства в другую с про-

тивоположным знаком: –2x – 7x ≥ – 42 – 3 и приведем подоб-
ные члены: –9x ≥ – 45;

- разделим обе части неравенства на отрицательное число –9 
и поменяем знак неравенства: x ≤ 5;

- изобразим множество решений последнего неравенства на чи-
словой прямой (см. рис. 7.1).

Рис. 7.1

Ответ: Т = (–∞; 5].
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7.7. СИСТЕМЫ И СОВОКУПНОСТИ УРАВНЕНИЙ 
И НЕРАВЕНСТВ С ОДНОЙ ПЕРЕМЕННОЙ

Определение 7.16. Пусть даны уравнения: f1 (x) = g1 (x) 
и f2 (x) = g2 (x).

Говорят, что уравнения образуют систему, если ставится задача 
отыскания таких значений переменной, которые обращают каж-
дое из уравнений в верное числовое равенство.

Система уравнений обозначается так:

Аналогичным образом определяется и система неравенств. 
(Предлагаем сделать это читателю самостоятельно.)

Из сказанного следует, что с логической точки зрения система 
уравнений (неравенств) есть конъюнкция предикатов, а множест-
во решений системы есть пересечение множеств решений входя-
щих в нее уравнений (неравенств).

Пример. Найти множество решений системы:

Решение. Преобразуем неравенства системы, заменяя их рав-
носильными.

Множеством решений неравенства x > 2 является промежуток 
(2; ∞), а множество решений неравенства x ≤ 6 есть промежуток 
(–∞; 6].

Изобразим эти множества на числовой прямой и найдем их пе-
ресечение (см. рис. 7.2):

Рис. 7.2

Т = Т1  Т2 = (2; ∞)  (– ∞; 6] = (2; 6].
Ответ: (2; 6].
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Определение 7.17. Говорят, что уравнения (неравенства) обра-
зуют совокупность, если ставится задача отыскания таких значений 
переменных, которые являются решением хотя бы одного из них.

Для обозначения совокупности используют квадратную скобку.

С точки зрения логики совокупность уравнений (неравенств) 
есть дизъюнкция. Соответственно, множество решений совокупно-
сти есть объединение множеств решений уравнений (неравенств), 
входящих в нее.

К совокупностям уравнений сводятся, например, уравнения 
вида:

(х – а1) (х – а2)... (х – ап) = 0 и |x| = a.
Действительно, 

(х – а1) (х – а2)... (х – ап) = 0⇔
 ⇔ (х – а1 = 0)  (х – а2 = 0)  …  (х – аn = 0);

|x| = a 

Примеры совокупности неравенств: |x| > a 

Примеры систем уравнений и неравенств:
|x| < a ⇔ –a < x < a.

 = 0 ⇔ 

Пример. Найти множество решений совокупности неравенств:

Решение.

Изобразим множества решений этих неравенств на числовой 
прямой и найдем их объединение (см. рис. 7.3):
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Рис. 7.3

Т = Т1  Т2 = (–∞; 5)  [1; ∞) = (–∞; ∞).
Ответ: (–∞; ∞).

7.8. СИСТЕМЫ УРАВНЕНИЙ С ДВУМЯ ПЕРЕМЕННЫМИ

Определение. Предикат вида f (x, y) = g (x, y), где x  X и y  Y, 
называется уравнением с двумя переменными.
Решением такого уравнения является пара чисел (х0, у0) из обла-

сти определения, при которых уравнение обращается в истинное 
числовое равенство.

Например, пара чисел (5; 7) является решением уравнения 
x + y = 12, так как 5 + 7 = 12 верное равенство, а пара чисел (4; 9) – 
решением не является, так как 4 + 9 ≠ 12.

Замечание. Как правило, уравнение с двумя переменными 
имеет бесконечно много решений, но это не значит (как мы видели 
выше), что любая пара чисел является ее решением.

В начальной школе учащиеся встречаются с заданиями, в ко-
торых (в неявном виде) идет речь о нахождении множества реше-
ний уравнений с двумя переменными. Например, им предлагает-
ся перечислить все пары (целых неотрицательных) чисел, сумма 
или произведение которых равно некоторому числу.

Понятие системы уравнений, введенное в п. 7.7 как конъюнкция 
уравнений, сохраняется и для уравнений с двумя переменными.
Решением такой системы является любая пара чисел (а; b), 

при подстановке которой в каждое уравнение системы получают-
ся истинные числовые равенства.

Пример. Решить систему уравнений:
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Решение.
1. Сначала решим данную систему уравнений методом под-

становки. Для этого выразим у из 2-го уравнения

 
.

и подставим выражение 4x – 20 в первое уравнение вместо у. 
Получаем систему:

.

Решая первое уравнение, находим, что x = 12. Отсюда 
y = 4 ∙ 12 – 20, т.е. у = 28. Таким образом, решением системы явля-
ется пара чисел (12; 28).

2. Теперь решим эту же систему методом алгебраического сло-
жения, для чего преобразуем 2-е уравнение к виду:

 .
Тогда система примет вид:

 
.

Умножим обе части 2-го уравнения системы на (–2), чтобы ко-
эффициенты при у стали противоположными числами 

и сложим почленно левую и правую части уравнений.
В результате получим уравнение с одной переменной: –3x = –36, 

откуда x = 12. Подставив это значение х в любое из уравнений си-
стемы, получаем, что y = 28. Значит, решением системы является 
(уже найденная выше) пара чисел (12; 28).

7.9. ГРАФИЧЕСКОЕ РЕШЕНИЕ УРАВНЕНИЙ 
И НЕРАВЕНСТВ С ДВУМЯ ПЕРЕМЕННЫМИ И ИХ СИСТЕМ

Изображение множества истинности предиката f (x, y) = g (x, y) 
на координатной плоскости называется графиком уравнения 
f (x, y) = g (x, y). Иначе говоря, график уравнения с двумя перемен-
ными есть множество точек плоскости, координаты которых явля-
ются решениями этого уравнения.
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Графиком уравнения ax + by + c = 0, где a ≠ 0 или b ≠ 0, является 
прямая линия; графиком уравнения у = ax2 + bx + c (a ≠ 0) – пара-
бола; графиком уравнения ху = k (k ≠ 0) – гипербола, а графиком 
уравнения (x – a)2 + (y – b)2 = R2 – окружность радиуса R с центром 
в точке C (a, b).

Чтобы решить систему уравнений графически, надо построить 
линии, заданные уравнениями системы, и найти координаты точек 
пересечения этих линий.

Пример. Решить графически систему уравнений.
 

Решение.
Уравнение y – x = 2 задает прямую. Чтобы ее построить, возь-

мем две точки. Если x = 0, то y = 2, а если y = 0, то x = –2.
Уравнение x2 + y2 = 4 задает окружность с центром в точке 

O (0, 0) и радиусом 2.
Из построенных графиков (см. рис. 7.4) видно, что точки пере-

сечения прямой и окружности имеют координаты (0; 2) и (–2; 0).

Рис. 7.4

Таким образом, Т = {(0; 2), (–2; 0)}.
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Пример. Решить графически неравенство 2x + 2y ≥ 0.
Решение. Для удобства выразим y и получим неравенство: 

y ≥ –x.
Сначала надо найти границу области. Для этого заменим знак 

неравенства на знак равенства и построим график уравнения 
y = –x. Это прямая, проходящая через начало координат и точку 
с координатами (1; –1).

Далее выберем область, где выполняется неравенство y ≥ –x. 
Возьмем какую-нибудь точку, например A(1;1), и подставим ее ко-
ординаты в неравенство y ≥ –x. Так как полученное неравенство 
1 ≥ –1 истинно, то и во всех точках над прямой это неравенство 
будет выполняться (см. рис. 7.5).

Рис. 7.5

Пример. Решить графически систему неравенств.

 
Решение. Сначала построим в одной системе координат графи-

ки уравнений y = –3x + 1 и y = x – 3.
Нетрудно убедиться в том, что решением неравенства 

является множество пар координат точек, расположенных выше 
прямой y = –3x + 1, а решением неравенства y ≤ x – 3 – множест-
во пар координат точек, расположенных ниже прямой у = x – 3 
или на ней (предлагаем читателю сделать это самостоятельно). 
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Тогда решениями системы неравенств будут пары координат точек 
дважды заштрихованной области (см. рис. 7.6).

Рис. 7.6

ЗАДАЧИ К ГЛАВЕ 7

К параграфам 7.1–7.4
1. Какие из следующих записей не являются числовыми выра-

жениями?
а) ((18 : 6 + 4) ∙ 3; б) ( + + 24 – 7); в) (64 + – 12) : 19; г) 144 + 28.
2. Какие из следующих записей являются числовыми выраже-

ниями?
а) 24 : 3 + 7; б) 47 > 12; в) (120 + x) : 4; г) 125; д) 38 – 14 = 7;
е) 52 + 32; ж)  + 12; з) x + y – 25.
3. Существуют ли числовые значения у следующих выражений, 

если в качестве допустимых результатов операций рассматривать: 
1) целые неотрицательные числа; 2) целые числа; 3) действитель-
ные числа?

а) (3 ∙ 5 + (14 – 15))(17 – 13); б) (48 : 24 + 32 : 4) ∙ 5;
в) ((19 + 2) : 14) ∙ 28; г) 36 : 10 + 24 : 60;
д) 19 : 5 + 66 : 30 + 5; е) 204 : 12 – 15 ∙ 2 + 7;
ж) 125 – (170 – 35) + 10.
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4. Верно ли, что:
а) всякое число является числовым выражением;
б) ни одно числовое выражение не содержит знаков отноше-

ний > , < , =;
в) каждое числовое выражение содержит хотя бы один знак 

действия;
г) любое числовое выражение содержит скобки;
д) все числовые выражения имеют значение.
5. Какие из следующих выражений можно упростить, убрав 

скобки?
а) 45 – (24 ∙ 5); г) (38 – (12 + 6) + (3 ∙ 8) : 2);
б) (39 : 3) – 7; д) (24 : 3) ∙ 2 + (148 : (64 : 16));
в) 100 : (5 ∙ 10); е) 125 – (70 – 35) + 13.
6. Прочитайте следующие выражения и найдите их значения:
а) 3 ∙ 24 + 12; г) 136 : (64 : 8);
б) 128 : 4 – 16 ∙ 2; д) (1812 – 612) : 22;
в) 144 ∙ (17 – 9); е) 135 : 3 – 7 ∙ 8.
7. Запишите следующие выражения с помощью математиче-

ских символов и найдите их значения:
а) разность числа 56 и суммы 23 и 4;
б) частное суммы чисел 128 и 52 и разности чисел 78 и 33;
в) произведение суммы чисел 47 и 18 и частного 48 и 12;
г) сумма частного чисел 154 и 7 и разности числа 31 и произве-

дения 2 и 4.
8. Выполните действия:
а) из частного чисел 180 и 12 вычесть разность чисел 36 и 29;
б) к произведению числа 2 и суммы чисел 20 и 18 прибавить 

частное числа 63 и разности чисел 11 и 2.
9. Найдите значения выражений, не пользуясь калькулятором:
а) 100 – (37 + 32 : 8 ∙ 2) : 3 ∙ 5 + 58;
б) 720 : 8 ∙ 9 – (3 ∙ 9 – 7 ∙ 2) ∙ 3;
в) 840 – 440 : (7 ∙ 8 – 5 ∙ 9 – 3) ∙ 5 – (38 – 8 ∙ 4);
г) (3 ∙ 7 + 3 ∙ 13) : (6 ∙ 5 – 12 ∙ 2) ∙ 10;
д) 5,9 –  – (4 – 3,7);
е) 4,2 : 0,2 – 9,8 – 7,84;
ж) 0,51 ∙ 0,36 :  ∙  : 1,7 : (1,8 + );
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з) (1 ) ∙ 6  + 3,75 : 1 ;
и) 2,4 : (0,425 + – 0,005) ∙ 1,7.
10. Расставьте скобки в выражении так, чтобы получились раз-

ные ответы:
а) 24 + 12 : 6 : 2; б) 2000 – 1000 – 500 : 25 : 5.
11. В данном выражении вместо знаков * расставьте знаки четы-

рех арифметических действий так, чтобы 100 являлось значением 
получившегося числового выражения: 42 * 2 * 56 * 7 * 9 * 8 * 1.

Задачи № 12–18 решите, составив числовые выражения.
12. Из двух городов, расстояние между которыми 700 км, однов-

ременно навстречу друг другу выехали автомобиль со скоростью 
60 км в час и мотоцикл со скоростью 80 км в час. Через сколько 
часов они встретятся?

13. За 7 ч мастер изготовляет 56 деталей, а ученик изготовляет 
такое же количество деталей за 14 ч. Сколько деталей изготовят 
мастер и ученик за 4 ч?

14. За 5 кг огурцов и 3 кг помидоров заплатили 660 руб. Цена 
1 кг огурцов – 60 руб. Сколько стоит 1 кг помидоров?

15. Один тракторист может вспахать участок земли за 1 ч, а дру-
гой за 75 % этого времени. Оба тракториста начали работу одно-
временно и проработали вместе 20 мин, после чего первый трак-
торист прекратил работу. Сколько нужно времени, чтобы второй 
тракторист закончил работу один?

16. Вкладчик взял из сберкассы сначала 
 
своих денег, а потом 

еще 64 руб. После этого у него осталось на сберкнижке  всех де-
нег. Каков был вклад?

17. Цену костюма сначала снизили на 10 %, а затем произвели 
снижение еще на 5 %. На сколько процентов снизили первоначаль-
ную цену костюма?

18. Петя прочитал книгу за 3 дня. В первый день он прочитал 
 часть всей книги и еще 60 страниц, во второй день – часть всей 

книги и еще 20 страниц, а в третий день –  всей книги и оставши-
еся 25 страниц. Сколько страниц было в книге?

19. У двух товарищей вместе 70 руб. Если первый отдал бы вто-
рому 12,5 % своей суммы, то денег у них стало бы поровну. Сколь-
ко денег у каждого товарища?
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20. В магазин привезли 24 кг конфет по цене 320 руб за 1 кг 
и 12 кг конфет по цене 550 руб за 1 кг.

К данному условию поставьте вопрос так, чтобы его решени-
ем было выражение:

а) 320 ∙ 24 + 550 ∙ 12; б) 320 ∙ 24 – 550 ∙ 12; в) (320 ∙ 24) : (550 ∙ 12).
21. Придумайте задачи, решением которых являются число-

вые выражения:
а) 300 : (60 + 40); б) 127 – (13 ∙ 3 + 12 ∙ 5); в) 1 – (0,36 + 0,75 ∙ 0,36);
г) 120 : 2 ∙ 5.
22. Какие из записей являются высказываниями:
а) (2 + 3 ∙ 7) : 4; б) 23 – 8 < 14 + 6; в) 2 + 48 = 32 + 7; 

г) 137 – 38 = 99; д) 13 : (7 – 7)?
23. Сравните значения числовых выражений и поставьте 

один из знаков = , > , < так, чтобы получилось истинное выска-
зывание:

а) 4,5 ∙ 1  – 6,75 и 16  – 13  – 2,5;
б) 1,2 : 0,375 – 0,2 и (7 – 6,25) ∙ 4;
в) 10,3 ∙ 0,21 – 15  : 7,5 и 0,95 : 5 – 15  : 6  + 
24. Найдите значения истинности следующих высказываний:
а) (6  – 5 ) : 1  < 3  – 2 ;
б) 4,3 – (– 6,1) + 2,4 = 4,3 – 6,1 + 2,4;
в) 3,9 ∙ 0,24 : 0,6 > (4,06 – 2 ) ∙ 0,8 – 4 ;
г) 3,1 – 0,04 –  <  +  – 2 .
25. Какие из следующих высказываний можно записать с по-

мощью знака равенства, а какие – с помощью знака неравенства?
а) число 63 меньше 82 на 19;
б) число 55 больше 13;
в) число 5 больше 3 на 2;
г) число 81 меньше 162 в 2 раза;
д) число31 меньше 45;
е) число 63 больше 7 в 9 раз;
ж) число 99 меньше 100.
26. Известно, что неравенство a > b истинно. При каких зна-

чениях c истинны неравенства?
а) ac > bc; б) a + с > b + c; в) ac < bc; г) a : c > b : c; 

д) a : c < b : c.
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27. Из следующих пар высказываний образуйте дизъюн-
кцию высказываний и определите ее значение истинности; 
истинные дизъюнкции запишите в виде нестрогого нера-
венства:

а) 1 < 3; 1 = 3; б) 8 = 9; 8 > 9;
в) 5 > 7; 5 = 7; г) 14 > 14; 14 = 14;
д) 13 = 13; 13 < 13; е) 27 > 11; 27 = 11.
28. Даны неравенства:
а) 23 ≥ 40; б) 7 ≤ 7;
в) 22 ≥ 14; г) 5 ≤ 8;
д) 62 ≥ 60; е) 35 ≥ 35.
Прочитайте каждое из них двумя способами:
1) используя союз «или»;
2) с помощью слова «не больше» или «не меньше» и опре-

делите их значения истинности.
29. Вместо * поставьте один из знаков ≤ или ≥ так, чтобы 

получилось истинное высказывание:
а) (122 – 92) : 21 * (52 ∙ 13 – 42 ∙ 13) : 5;
в) 3,2 ∙ 2,4 – 0,7 ∙ 0,8 * 14,8 : 4 + 3 ∙ 1,14;
г) 0,25 ∙ 1,12 + 4 ∙ 0,35 * 12,3 : 4,1 – 1,7;
д) 245 : 5 + 56,8 : 7,1 * 82 – 72 + 132;
е) (3,233 – 3,032) : 0,2 * 3,36 : 0,8 + 0,2 ∙ 10,3.
30. Из следующих пар высказываний образуйте конъюн-

кцию высказываний и определите ее значение истинности; 
истинные конъюнкции запишите в виде двойного неравенства:

а) 42 < 53; 53 < 64; б) – 2,1 < – 2,4; – 2,4 < – 2;
в) – 5 > – 3; – 3 > 4; г) 5 > 1; 12 > 5.
31. Прочитайте следующие неравенства и определите их 

значения истинности:
а) 4 ≤ 9; б) 1 < 2 < 4; в) 17 ≥ 28; г) 29 ≥ 29; д) 5 ≤ 7 ≤ 7.
32. Какие из знаков > , < , = , ≤ , ≥ можно поставить вме-

сто *, чтобы получилось истинное высказывание?
а) 3 * 4; б) 3 * 3; в) 2 * 7 * 9; г) 27 * 27.
(Рассмотрите все возможные случаи.)
33. Сформулируйте отрицания следующих высказываний 

(сделайте символические записи):
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а) 28 < 30; б) 12 ≥ 8; в) 150 ≤ 210; г) 27 > 19 и найдите их значе-
ния истинности.

34. Проверьте истинность равенств:
а) 102 + 112 + 122 = 132 + 142;
б) 33 + 43 + 53 = 63;
в) 8833 = 882 + 332;
г) 9474 = 94 + 44 + 74 + 44;
д) 1972 = (1 + 9 + 7 + 2)(12 + 92 + 72 + 22) – 197 ∙ 2 – (197 + 2);
е) 1972 = 19 ∙ 72 + 197 ∙ 2 + (197 – 2) + (1 + 9 + 7 – 2);
ж) 675 + 872 = (63 + 73 + 53) + (83 + 73 + 23);
з) 1634 = 14 + 64 + 34 + 44.
35. Какие из записей являются выражениями с переменной:
а) 3x + 7; б) t2 – 1,24t + 2; в) y + 4 = 13; г) x ∙ y; д) 24 – (48 – 15);
е) 2x; ж) 3y < 6?
36. Найдите значения выражений при заданных значениях пе-

ременных:
а) x2 – Зx + 7, при х = –3; б) (x – 2) x + 1,3, при x = 12; в)  

при x = 0,5 и y = – 4; г)  при m = – 1.
37. Напишите выражение с переменной, которое не имеет зна-

чения:
а) при х = 5; б) при y = – 1; в) при x = 0 и x = 2; 
г) x = – 3 и y = 3; д) при x < – 3,2; е) при y ≥ 5;
ж) при х = y.
38. Найдите область определения выражений:

а) 2y – 7; б) ; в) ; г) ;

д) ; е) ; ж) ; з) ;

и) ; к) ; л) .

39. При каких значениях переменной следующие выражения 
не имеют числового значения?

а) ; б) ; в) ; г) ; д) ; е) 

40. Докажите следующие тождества:
а) (a2 + b2)(x2 + y2) = (ax – by)2 + (bx + ay)2;
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б) x3 + y3 + z3 – 3xyz = (x + y + z)(x2 + y2 + z2 – xy – xz – yz);

в) 

г) 
41. При каких значениях х являются тождествами следующие 

равенства:
а) 8x + 9 +  = 8x + 9;

б)  = x + 2;

в) ?

42. Является ли тождеством равенство ( )2 = x? Истинно 
ли оно при х = – 4?

43. Являются ли тождественно равными выражения:
а) (x + y)(x – y) и x2 – y2;

б)  и ;

в) x – 1 и y – 1?

К параграфам 7.5–7.9
44. На множестве N всех натуральных чисел задано уравнение
3x2 – 15x = 0. Объясните, почему число 5 является решением 

данного уравнения, а числа 7 и 0 не являются его решениями.
45. Вместо многоточия вставьте слова «необходимо», «доста-

точно» или «необходимо и достаточно» так, чтобы получилось 
истинное высказывание:

а) для того, чтобы х = а являлось корнем уравнения f(x) = 0, …, 
чтобы а принадлежало множеству определения этого уравнения;

б) для того, чтобы х = а являлось корнем уравнения f(x) = 0, …, 
чтобы f(а) было истинным высказыванием;

в) для того, чтобы х = а являлось корнем уравнения f(x) = 0, …, 
чтобы а принадлежало множеству определения этого уравнения 
и f(а) было истинным высказыванием.
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46. Даны пары уравнений:
а) х2 – 4 = 0 и x – 2 = 0;
б) 5x – 3 = 2x + 6 и 3x – 9 = 0;
в) (x – 3) (x – 4) = 0 и х2 + 12 = 7x;
г) 2x – 5 = Зх– 18 и x – 13 = 0;
д) х2 + 18 = 1 и х2 + 6x + 21 = 5.
Какие из этих уравнений равносильны:
а) на множестве всех действительных чисел;
б) на множестве всех целых чисел;
в) на множестве всех целых неотрицательных чисел;
г) на множестве всех натуральных чисел?
47. Не решая уравнений, определите, какие из преобразований 

могут привести к нарушению равносильности, если уравнения 
заданы:

а) на множестве действительных чисел;
б) на множестве целых неотрицательных чисел.

Исходное Исходное 
уравнениеуравнение Выполненное преобразованиеВыполненное преобразование Полученное Полученное 

уравнениеуравнение

1 9x – 7 = 5x – 1 К обеим частям уравнения при бавили выра-
ж ение 7 – 5x

4x = 6

2 x2 + 2x = 0 Обе части уравнения разделили на выраже-
ние x

x + 2 = 0

3 (x + 1) 5 = x2 + x Обе части уравнения разделили на выраже-
ние x + 1

5 = x

48. Решите следующие уравнения и объясните, где и каким 
свойством равносильных уравнений вы пользовались:

а) 3x – 14 = 2x + 9;
б) 3(x – 5) = 0,5x(2x – 7);
в)  (2 – x) + 5 =  .
49. Известно, что уравнения f (x) = 0 и g (x) = 0 равносиль-

ны на множестве натуральных чисел. Можно ли утверждать, 
что они равносильны и на множестве действительных чисел? От-
вет подтвердите примером. Верно ли обратное?

50. Даны уравнения:
а) Зx – 20 = 19; б) 210 – 5x = 55; в) 32 ∙ (3 – x) = 64;
г) 7x + 41 = 83; д) 240 : (x – 2) = 8; е) (9x + 7) : 2 = 35.
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Решите эти уравнения: 1) на основе зависимости между резуль-
татом и компонентами действий; 2) используя свойства равносиль-
ных уравнений, и сравните эти способы решения.

51. При объяснении решения уравнения (x – 3) (x + 2) = 0 были 
получены следующие ответы:

Учащийся А. Если произведение равно нулю, то оба множите-
ля равны нулю. Следовательно, x – 3 = 0 и x + 2 = 0, откуда x = 3 
и x = – 2.

Учащийся Б. Произведение равно нулю, если хотя бы один 
из множителей равен нулю. Следовательно, x – 3 = 0 или x + 2 = 0. 
Отсюда x = 3 или x = – 2.

Учащийся В. Если произведение равно нулю, то хотя бы один 
из множителей равен нулю. Следовательно, x – 3 = 0 или x + 2 = 0. 
Отсюда х = 3 или х = – 2.

Учащийся Г. Произведение равно нулю только в том случае, 
когда первый множитель равен нулю или второй множитель равен 
нулю. Следовательно, x – 3 = 0 или x + 2 = 0. Откуда x = 3 или x = –2.

Кто из учащихся рассуждал правильно?
52. Для каждого из следующих уравнений найдите область оп-

ределения и множество решений:

а) ;

б) ;

в) ;

г) 
   

3
x – 3

.

53. Существует ли такое значение t, при котором сумма дробей
 и  равна их произведению?

54. Турист за 3 дня прошел 48 км. В первый день он прошел 
на 6 км меньше, чем во второй, а в третий день 0,7 пути, пройден-
ного во второй день. Сколько километров проходил турист в каж-
дый из трех дней?
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55. Произведение двух последовательных натуральных чисел 
равно 1056. Найдите эти числа.

56. Разность квадратов двух последовательных натуральных 
чисел равна 149. Найдите эти числа.

57. Квадрат суммы двух последовательных четных натураль-
ных чисел равен 2116. Найдите эти числа.

58. Числитель дроби на 2 больше знаменателя, а значение раз-
ности этой дроби и обратной ей равно . Найдите эту дробь.

59. Одна бригада выполняла задание в течение 3,5 дней, а за-
тем она была заменена второй, которая закончила работу за 6 дней. 
За сколько дней каждая бригада в отдельности выполнила бы зада-
ние, если известно, что второй бригаде для этого нужно на 5 дней 
больше, чем первой?

60. Ученик прочитал книгу в 480 страниц, ежедневно читая 
одинаковое количество страниц. Если бы он читал каждый день 
на 16 страниц больше, то он прочитал бы книгу на 5 дней раньше. 
Сколько дней ученик читал книгу?

61. Поезд должен был пройти 240 км за определенное время. 
После трех часов пути он был задержан на 30 мин, и чтобы при-
быть на место назначения без опоздания, ему пришлось увели-
чить скорость на 3  км в час. Какова была первоначальная ско-
рость поезда?

62. Моторная лодка прошла по течению реки 39 км, а затем про-
тив течения 35 км. Вся поездка продолжалась 10 ч, причем на оста-
новки в пути было затрачено 2 ч. Найдите собственную скорость 
моторной лодки, если скорость течения реки равна 3 км в час.

63. Решите уравнения с параметром b:
а) bx = 5; б) 1 – bx = x; в) bx – 2x = 5b – 10.
64. Запишите неравенство, множеством решений которого яв-

ляется числовой промежуток: а) (– ∞; 5]; б) (–2,4; ∞); в) [2; 14]; 
г) (–3; 15,8); д) (–12; 0].

65. Найдите множество решений неравенства:
а) – 2 < х < 5; б) 0 ≤ х ≤ 6,1; в) 2 ≤ х ≤ 3 при условии, что 
1) х  R; 2) х  Z; 3) х  N0; 4) х  N.
Для каждого случая дайте графическую иллюстрацию на чи-

словой прямой.
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66. Определите, какое неравенство следует из какого, и за-
пишите этот факт, используя символ : а) x < 2; x < 5; б) x > 3; 
x > 7; в) x ≥ 4; x > 4; г) x ≥ 7; x > 6. (Считайте, что x – действи-
тельное число.)

67. Равносильны ли неравенства:
а) 3x < 16 и 4x ≤ 20; б) 0 < x ≤ 6 и –2 < x < 7;
в) x > 12 и 3x > 36; г) x2 < 0 и x2 ≤ 0;
д) x2 > 0 и x > 0;  если 1) х  N; 2) х  R?
68. Не решая неравенств, определите, какие преобразования 

могут привести к нарушению равносильности на множестве дей-
ствительных чисел:

Исходное Исходное 
неравенствонеравенство

Выполненное Выполненное 
преобразованиепреобразование

Полученное Полученное 
неравенствонеравенство

1 9x + 2 < 7 Из обеих частей неравенства 
вычли число 2

9x < 5

2 –5x > 10 Обе части неравенства разде-
лили нa –5

x < –2

3
x – 4 > 

Обе части неравенства умно-
жили на 15

5x – 60 > 3

4 Обе части неравенства умно-
жили на x + 3

4x – 1 < 2(x + 3)

69. Решите следующие неравенства, объясняя, где и каким 
свойством равносильных неравенств пользовались:

а) 3(2x – 1) + 5x < 8; б) x –  > ; в) 12(3 – x) > .
70. Укажите множество, на котором неравенства  > 5 

и 3 – x < 5(x – 4) будут равносильны.
71. При каких значениях x значение разности выражений  

и  – положительно?
72. а) Докажите, что при любом натуральном p значение суммы 

выражений
 и  – положительно.

б) Останется ли это утверждение верным, если: 1) p – целое не-
отрицательное число; 2) p – положительное действительное число?

73. Найдите множество целых значений y, являющихся решени-
ем неравенства  + 1 < .
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74. Докажите, что множество действительных решений следу-
ющих неравенств пусто:

а) 5 ∙ (1,4 + 1,3y) > 13 (0,5y + 1) + 0,9;
б) 7x + 4 ∙ (x + 2) < 4 (Зx + 1) – (x + 1);
в)  >  .

75. Докажите, что следующие неравенства справедливы 
для всех натуральных значений x:

а) 12(3x + 4) – 14x > 11(2x – 5);
б)  < ;

в) (3x + 7)x + 4 > 3(x + 1)2.
76. Какие из неравенств в задании № 75 справедливы для всех 

действительных значениях x?
77. Решите задачи, составив неравенства:
а) Одна из сторон участка прямоугольной формы равна 14 м. 

Какой должна быть другая сторона, чтобы периметр участка был 
меньше его площади?

б) Из города A в город Б выехал автомобилист со скоро-
стью 60 км/ч, а спустя 2 часа вслед за ним выехал мотоциклист. 
С какой скоростью должен ехать мотоциклист, чтобы прибыть 
к месту назначения первым, если расстояние между городами 
420 км?

78. Решите неравенства относительно переменной х:
а) a(x + 1) < 2x + 3; б) 2ax + 3 < a + 6x; в) ax + 3 > 2x – 7.
79. Вместо многоточия вставьте союз «и», либо «или», чтобы 

получилось истинное высказывание:
а) ху = 0 ⇔ х = 0... у = 0;
б) ху ≠ 0 ⇔ х ≠ 0... у ≠ 0;

в)  = 0 ⇔ х = 0... у ≠ 0.

80. Представьте следующие уравнения в виде дизъюнкции 
и найдите их множества действительных решений:

а) (x – 4,5)(x + 9) = 0; б) 5(Зx – 1)(2x + 17) = 0; 
в) x(x – 2,8)(x + 1) = 0; г) – 2 (1 + x)(12x + 4) = 0;
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д) |x| = 2,8; е) |7 – 8x| = 4;
ж) |x – 1| = 5,3;  з) |3x + 4| = 1;
и) (x + 3)(x – 2)2 = 0;  к) (x – 8)3(x + 2)2 = 0.
81. Представьте следующие уравнения в виде конъюнкции 

и найдите их множества действительных решений:

а)  = 0; б)  = 0; 

в)  = 0.
82. Какие из чисел 3; –1; 1  являются решением: а) системы;
б) совокупности неравенств 2x – 3 > x – 1 и 4x + 3 > 8 – x?
83. Решите системы и совокупности неравенств:

а) ;

б) ;

в) ;

г) ;

д) .

84. Найдите множество действительных решений неравенства:
а) |x| < 7; б) |x| > 4,3; в) |x – 1| ≤ 5;
г) |1 – x| ≥ 8,5; д) |x + 5| ≥ 0; е) |x + 4| < 0;
ж) x2 – 4 ≤ 0; з) x2 – 5x + 6 ≥ 0; и) x2 – 2x + 7 ≥ 0;
к) 2x2 + 9x –7 < 0; л) x2 – x + 9 < 0; м) (x + 3)(x – 2)2 < 0;
н) (x – 7)x2 > 0; о) (x – 2)2(x – 3) ≤ 0.
85. Закончите утверждение так, чтобы оно было истинным:
а) xy > 0⇔ (x > 0 и y > 0) или …
б) xy < 0⇔ (x > 0 и y < 0) или …
в)  > 0⇔ x > 0 и y > 0 …

г)  < 0⇔ x > 0 и y < 0 …
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86. Решите неравенства:
а) ; б)

 
; в) 

 
≥ 0; г)  ≤ 0;

д) ;

и) .

87. Является ли пара чисел (–2; 11) решением уравнения 
2x – y = 7? А пара (–2; –11)?

88. Путем подбора найдите несколько решений уравнения 
3x + y = 5. Можно ли сказать, что:

а) уравнение имеет бесконечно много решений;
б) любая пара действительных чисел является решением дан-

ного уравнения?
89. При каком значении а пара чисел (a, 6) является решением 

уравнения
x – 3y = 0?
90. При каком значении b пара чисел (3, b) является решением 

уравнения
2x – y = 0?
91. Запишите уравнение с двумя переменными х и у, решением 

которого является пара чисел: а) (–2; 1); б) (1; –2); в) (0; 0).
92. Запишите по 3 решения каждого из уравнений:
а) xy = 0; б) x(y + 1) = 0; в) (x + 2)(y – 4) = 0.
93. Миша получил сдачи 70 руб монетами достоинством в 2 руб 

и 5 руб. Сколько монет каждого достоинства мог получить маль-
чик?

94. Даны 2 уравнения: x + y = 8 и x – y = 6. Найдите пару чисел, 
которая:

а) является решением первого уравнения, но не является реше-
нием второго;

б) является решением второго уравнения, но не является реше-
нием первого;

в) является решением первого и второго уравнений;
г) является решением первого или второго уравнения;
д) не является решением ни первого, ни второго уравнения.
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95. Выясните, равносильны ли на множестве R – действитель-
ных чисел системы уравнений:

 и .

96. Решите следующие системы уравнений методом подста-
новки:

а)
 

;

б)
 

;

в) .

97. Решите следующие системы уравнений методом алгебраи-
ческого сложения: 

а) ;

б) ;

в) .

98. Бригада должна была выполнить заказ за 12 дней. Ежеднев-
но перевыполняя норму на 25 %, за10 дней работы она не толь-
ко выполнила заказ, но еще и изготовила сверх нормы 42 детали. 
Сколько деталей в день изготовляла бригада?

99. Два поезда выехали навстречу друг другу с двух станций, 
расстояние между которыми равно 400 км. Через 4 часа расстояние 
между ними сократилось до 40 км. Если бы один из поездов вышел 
на 1 час раньше, то их встреча произошла бы на середине пути. 
Определите скорости поездов.

100. За 24 дня две бригады строителей, работая совместно, сда-
ли в эксплуатацию 5 однотипных объектов. Сколько дней понадо-
бится каждой из бригад на постройку одного такого объекта, если 
известно, что одна из них может сдать его в эксплуатацию на 4 дня 
раньше, чем другая?

101. Не решая уравнения Зx – 1 = y – 2, определите, какие из то-
чек A(3, 10), B(–3; 1) и C(–4, –11) принадлежат, а какие – не при-
надлежат его графику.
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102. Изобразите на координатной плоскости множества истин-
ности следующих предикатов:

а) 2x – y + 7 = 0; г) у = 4 – х2;
б) х2 + у2 > 9; д) Зy + x + 5 ≤ 0;
в) у = х2 + 3; е) у < (x – З)2.
103. Решите следующие уравнения и неравенства графически:
а) х2 – у = 1; д) х2 + у2 = 0;
б) 4x – Зу < 3; е) x ∙ у = – 2;
в) x – y – 5 ≥ 0; ж) х2 + (y – 1)2 > 16;
г) y < ; з) х2 + у2 > 0.
104. Изобразите множество решений следующих систем урав-

нений и неравенств на координатной плоскости:
а) ; б) ;

в) ; г) ;

д) ; е) ; 

ж) ; з) .
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ГЕОМЕТРИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ 

ПЛОСКОСТИ

8.1. ПРЕОБРАЗОВАНИЯ МНОЖЕСТВА
Напомним (см. [1]), что биекцией между множествами A и B 

или взаимно однозначным отображением множества A на множе-
ство B называется любое соответствие f между A и B, при котором 
каждому элементу a из множества A соответствует единственный 
образ b в B, и у каждого элемента из B во множестве A имеется 
единственный прообраз. Особенность графа биекции: из каждой 
точки множества A выходит единственная стрелка, и к каждой точ-
ке множества B подходит единственная стрелка.

Если на графе биекции f развернуть все стрелки, то получим 
граф так называемого обратного соответствия f –1, которое, очевид-
но, тоже будет биекцией (между B и A) – так называемой обратной 
биекцией f –1.

Замечание. Если A и B – конечные множества и между ними 
установлена биекция, то они должны состоять из одинакового чи-
сла элементов.

Пусть f – биекция между множествами A и B, g – биекция между 
множествами B и C. Композицией биекций f и g назовем соответст-
вие f o g между множествами A и C по закону
 (f o g) (a) = g (f (a)). 

В соответствии с этим определением на графе замыкаются все 
цепочки a f b, b g c:
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Рис. 8.1

в результате чего получается граф биекции f o g между множе-
ствами A и C.

Граф помогает понять, что всегда (f o g) –1 = g –1 o f –1 (для это-
го достаточно просто развернуть все стрелки!), а также что всегда 
f o f –1 = idA, f 

–1 o f = idB. Здесь idA (от англ. identity) – тождественная 
биекция между A и A, которая каждую точку множества A оставля-
ет на месте (аналогичный смысл имеет idB). Граф idA:

Рис. 8.2

Из

Рис. 8.3
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можно понять, что композиция биекций ассоциативна, т.е. всег-
да (f o g) o h = f o (g o h).

Определение 8.1. Преобразованием множества M (М ≠ ) на-
зывается любая биекция или взаимно однозначное отображение f 
этого множества на себя.

Примеры: 1) Подстановки (из n) – преобразования конечного 
множества M = {1, 2, ..., n}.

При n = 3 имеем 3! = 6 подстановок, которые обозначают (123), 
(231), (312), (213), (132), (321). В каждой из этих записей указы-
ваются последовательно образы элементов 1, 2, 3. Подстановку 
(123), при которой 1 переходит в 1, 2 переходит в 2, 3 переходит 
в 3, называют тождественной и обозначают id или p0. Остальные 
подстановки обозначим соответственно p1, p2, p3, p4, p5.

Найдем, к примеру, композицию подстановок p1 и p3: p1 o 
p3 = (231) o (213) = (132) = p4, а также композицию p3 o p1 = (213) o
o (231) = (321) = p5. Видим, что p1 o p3 ≠ p3 o p1, т.е. не всегда f o g = 
= g o f, а, следовательно, композиция подстановок не коммутативна.

Роль нейтрального элемента некоммутативной бинарной ал-
гебраической операции о (см. [1], с. 55) выполняет, очевидно, 
подстановка p0 = id. Это означает, что для любой подстановки f 
f o id = id o f = f. Для каждой из 6 подстановок p0, p1, p2, p3, p4, p5 
можно найти обратную подстановку (обратную биекцию!). Напри-
мер, для p1 = (231) обратной будет (312) = p2, т.е. (231)–1 = (312). 
Проверьте, что p1 o p2 = p2 o p1 = id, а также догадайтесь, как можно 
легко находить обратную подстановку. (Указываются номера мест, 
которые занимают 1, 2, 3 в данной подстановке!)

Вопросы: 1) В чем заключается особенность графа (матрицы) 
подстановки?

2) Как по графу (по матрице) подстановки можно находить 
обратную ей подстановку?

3) Укажите граф каждой из шести подстановок p0, p1, p2, p3, p4, p5:

Рис. 8.4
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Какие три из них вы бы назвали циклическими (круговыми)?
Составим таблицы Пифагора для бинарной алгебраической 

операции о и для унарной алгебраической операции «нахождение 
обратной подстановки» (обе эти операции определены на множе-
стве G = {p0, p1, p2, p3, p4, p5} из 6 подстановок):

Рис. 8.5

Вопросы: 1) Как вторую таблицу можно получить из первой? 
Что мы увидим, если ко второй таблице добавим строку (p–1)–1?

2) Симметрична ли первая таблица относительно главной диа-
гонали (той, что спускается из верхнего левого угла в нижний пра-
вый)? Что это означает?

Обратите внимание на то, что в каждой из 6 строк и в каждом 
из 6 столбцов первой таблицы представлены все 6 подстановок p0, 
p1, p2, p3, p4, p5, поэтому любое уравнение pi o x = pj и y o pi = pj име-
ет в G единственное решение, которое легко может быть найдено 
при помощи первой таблицы Пифагора (попробуйте объяснить, 
как это делается).

Решая уравнение p2 o x = p5, мы в строке p2 находим p5 и видим, 
что x = p3. Если же мы решаем уравнение y o p5 = p2, то мы должны 
в столбце p5 найти p2 и прочитать ответ y = p4. Таким образом, на мно-
жестве G из 6 подстановок p0, p1, p2, p3, p4, p5 мы имеем бинарную алге-
браическую операцию о, которая ассоциативна (почему?), имеет ней-
тральный элемент (его роль выполняет тождественная подстановка 
id = p0, ибо всегда pi o id = id o pi = pi), вместе с каждой из 6 подстановок 
G содержит обратную. Все это позволяет говорить, что G – некомму-
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тативная группа преобразований множества M = {1, 2, 3} ([2]). Это – 
конечная группа, в ней всего 6 элементов (подстановок).

Из таблиц Пифагора можно увидеть, что в G есть подмно-
жества, содержащие тождественную подстановку id, замкнутые 
относительно групповой операции о и операции нахождения 
обратной подстановки, а, значит, сами являющиеся группами 
преобразований – подгруппами группы G, – это {id} (такая ми-
нимальная подгруппа есть у любой группы преобразований!) 
и {p0, p1, p2} (эти подстановки называются циклическими, т.е. 
круговыми – почему?).

Задача 8.1. Решите уравнения: 1) x ² = x; 2) x ² = p0; 3) x ² = p1; 
4) x ² = p5; 5) x o y = p0.

Здесь x ² = x o x.
2) Группа преобразований подобия плоскости. Из школьного 

курса геометрии известно, что подобие – это преобразование (!) 
множества точек плоскости, при котором все расстояния изменя-
ются в фиксированное число k раз. Положительное число k назы-
вается коэффициентом подобия.

Что такое композиция подобий f o g? – Результат последователь-
ного выполнения этих преобразований. Она ассоциативна как ком-
позиция любых биекций; имеет нейтральный элемент – тождест-
венное преобразование плоскости id, когда каждая точка переходит 
сама в себя (здесь k = 1); обратное преобразование f–1 для подобия 
f с коэффициентом k – это тоже подобие, но с коэффициентом k–1. 
Сказанное означает, что все подобия плоскости образуют группу 
преобразований.

Эта группа – подгруппа группы всех преобразований плоскости, 
среди которых, например, преобразование h, которое одну фиксиро-
ванную точку A переводит в другую фиксированную точку B, точку 
B – в точку A, а все остальные точки оставляет на месте. Попробуйте 
объяснить, что это преобразование h не является подобием.

Определение 8.2. Стационарной подгруппой геометриче-
ской фигуры Ф (любого множества точек плоскости) называ-
ется множество всех преобразований плоскости, переводящих 
точки фигуры Ф в точки фигуры Ф, т.е. сохраняющих фигуру Ф 
инвариант ной (неизменной).
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Можно рассматривать стационарные подгруппы одноточечно-
го множества, множества точек некоторой прямой, окружности, 
а также любой другой геометрической фигуры Ф.

В свою очередь, у группы всех подобий имеется много собст-
венных подгрупп, отличных от простейшей {id}. Например, все 
подобия с коэффициентом k = 1 (так называемые движения пло-
скости), все повороты (нем. Rotation) с фиксированным цент-
ром C, все параллельные переносы (Translation), осевая сим-
метрия  Sd (Symmetrie) вместе с тождественным преобразованием 
плоскости id, центральная симметрия Z C (Zentrum) с id и т.д.

3) Группа симметрий правильного многоугольника. Можно про-
верить, что множество GФ всех движений плоскости, оставляющих 
данную фигуру Ф на месте, является группой – подгруппой груп-
пы движений плоскости. Каждое движение, переводящее точки 
фигуры Ф в точки фигуры Ф, называется симметрией геометри-
ческой фигуры Ф, а группа GФ – группой симметрий этой фигуры. 
О фигуре Ф, для которой эта группа сводится к простейшей {id}, 
принято говорить, что она не обладает симметриями.

Например, для квадрата ABCD с центром O группа симметрий 
состоит из четырех осевых симметрий (найдите оси!) и четырех 
поворотов , где  = 0, .

Вопрос. А где здесь тождественное преобразование id, присут-
ствие которого является обязательным для любой группы преобра-
зований?

4) Если взять «плоскость» M, состоящую всего из трех точек 1, 
2, 3, и назвать прямыми любые двухточечные подмножества мно-
жества M = {1, 2, 3}

Рис. 8.6
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то любое из шести преобразований (см. пример 1) такой пло-
скости M прямые всегда будет переводить в прямые.

Если же «плоскость» M состоит из 7 точек 1, 2, 3, 4, 5, 6, 7 и 7 
«прямых» {1, 2, 7}, {4, 3, 7}, ..., {5, 6, 7} (см. рис. 8.7, здесь че-
рез любые две точки проходит единственная прямая, любые две 
прямые пересекаются в точке, на каждой прямой лежит ровно три 
точки и через каждую точку проходит ровно три прямых):

Рис. 8.7

то среди преобразований такой плоскости можно увидеть 
как преобразования, которые любые прямые переводят в прямые, 
так и преобразования, не обладающие этим свойством: к первым 
относится, например, подстановка (3214765), чем-то напоминаю-
щая осевую симметрию с осью {2, 4, 6}, ко вторым – подстановка 
(2345671), которая прямую {4, 3, 7} переводит в прямую {5, 4, 1}, 
но прямую {1, 3, 6} переводит в фигуру {2, 4, 7}, не являющуюся 
прямой.

Задача 8.2. a) Найдите образ каждой из 7 «прямых» при пре-
образовании (3214765). b) Найдите еще хотя бы одно преобразова-
ние этой «плоскости» M, отличное от id, при котором сохраняется 
коллинеарность точек, т.е. точки, лежащие на одной прямой, оно 
переводит в точки, лежащие на одной прямой. В какие точки та-
кие преобразования переводят точки, которые не лежат на одной 
прямой?

Задача 8.3. Найдите инвариантные точки и инвариантные 
прямые преобразования (3214765) и обратного ему преобразова-
ния плоскости M = {1, 2, 3, 4, 5, 6, 7}. Будут ли «треугольники» 
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{1, 2, 3}, {1, 2, 4} и «четырехугольники» {1, 2, 3, 4}, {1, 2, 5, 6} ин-
вариантными фигурами преобразования (3 2 1 4 7 6 5) и обратного 
ему преобразования?

Задача 8.4. Сколько всего преобразований у плоскости 
M = {1, 2, 3, 4, 5, 6, 7}? Сколько преобразований содержит стацио-
нарная подгруппа фигуры Ф, если: a) Ф = {1} – это одноточечное 
множество; b) Ф = {2, 3, 4, 5, 6, 7}; c) Ф – это «прямая» {1, 2, 7}; 
d) Ф – это «треугольник» {1, 2, 3}; e) Ф – «четырехугольник» 
{1, 2, 3, 4}?

Укажите хотя бы по одному преобразованию каждой из этих 
стационарных подгрупп. Совпадают ли стационарные подгруппы 
фигур Ф из заданий a) и b)? из заданий d) и e)?

Задача 8.5. Для какого числа преобразований «прямая» {1, 2, 
7} будет «прямой» инвариантных точек? Приведите пример хотя 
бы одного такого преобразования, отличного от id. Для какого чис-
ла преобразований «прямая» {1, 2, 7} была инвариантной «пря-
мой»? (см. задачу 8.4c).

Задача 8.6. Верно ли, что если при некотором преобразовании 
плоскости М = {1, 2, 3, 4, 5, 6, 7} две точки прямой инвариантны, 
то инвариантной будет и третья точка этой прямой? Каким будет 
ответ, если в качестве такого преобразования мы возьмем преобра-
зование (3214765)?

8.2. ДЕКАРТОВЫ КООРДИНАТЫ НА ПЛОСКОС ТИ

В курсе школьной математики происходит знакомство с пря-
моугольной декартовой системой координат x O y на плоскости, 
которая вполне определяется своей начальной точкой О и парой 
единичных взаимно перпендикулярных векторов i , j ; последние 
задают направление и масштаб на каждой из координатных осей 
Ox (ось абсцисс) и Oy (ось ординат).

Если радиус-вектор  произвольной точки М плоскости раз-
ложить по координатным векторам i  и j , т.е. представить  в виде

 = x i  + y j
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Рис. 8.8

то это разложение единственно, а его коэффициенты x, y на-
зываются координатами (прямоугольными декартовыми) точки 
M в системе координат x O y. Пишут: M (x, y) и называют первую 
координату x абсциссой, а вторую y – ординатой точки M. Между 
координатами x, y мы будем ставить запятую, а не точку с запя-
той, так как последний знак следует использовать только тогда, 
когда в роли координат используются десятичные дроби. Пару век-
торов i , j  (порядок важен!) принято называть ортонормированным 
базисом.

Замечание. При помощи системы координат x O y устанавли-
вается биекция между множеством точек плоскости и декартовым 
квадратом R × R множества действительных чисел R.

В школе эта система координат имела ограниченное примене-
ние в геометрии (что, на наш взгляд, даже хорошо). В частности, 
рассматривались уравнение прямой, уравнение окружности и не-
которые вопросы, связанные с этими геометрическими фигурами.

Обобщением для евклидовой плоскости прямоугольной декар-
товой системы координат O i  j  является общая декартова или аф-
финная система координат O a  b . Здесь a , b  – упорядоченная 
пара неколлинеарных (не параллельных) векторов, которые задают 
направление и масштаб на оси абсцисс Ox и оси ординат Oy.
Радиус-вектор  произвольной точки M единственным 

образом раскладывается по базисным векторам a , b  (вектор  
мы представляем в виде суммы двух векторов, соответственно кол-
линеарных векторам a  и b)
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Рис. 8.9

а коэффициенты x и y разложения  = x a + y b называются аф-
финными (общими декартовыми) координатами (x – абсциссой, 
y – ординатой) точки M относительно системы координат O a b.

Саму систему координат O a b будем далее называть аффинным 
репе́ром и обозначать R (от франц. repère – метка).

Так как сумма векторов находится по правилу параллелограмма 
или по так называемому правилу треугольника, которое в некото-
ром смысле более универсальное, так как позволяет складывать 
коллинеарные векторы m и n

Рис. 8.10

то практическое нахождение координат точки M в аффинном 
репере R сводится к проведению через точку М прямых, парал-
лельных осям Ox и Oy, до пересечения с осями Oy и Ox соответст-
венно и последующему определению коэффициентов x, y разложе-
ния  = x a + y b.

Можно заметить, что все точки оси абсцисс Ox (и только они!) 
имеют нулевую ординату y, а точки оси ординат Oy характеризуется 
условиeм x = 0. Начало координат – точка O (здесь O – буква, а не чи-
сло 0! – от лат. Original) – обе ее координаты равны нулю: O (0, 0).
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В прямоугольной декартовой системе координат O i j, которая 
изучалась в школе и которую мы будем также называть ортонор-
мированным репером, выполнялись на самом деле аналогичные 
построения, хотя вместо слова параллельно и звучало слово пер-
пендикулярно.

Если на плоскости помимо репера R = O a b задан еще один 
аффинный репер R͂ = O͂ p q, то у каждой точки М к старым коорди-
натам х, у в репере R добавляются новые x͂, y͂ в репере R͂.

Пусть известны координаты нового начала O͂ (x0, y0) в старом ре-
пере R, а также координаты базисных векторов p, q нового репера 
R͂ относительно старого базиса a, b: p (p1, p2), q (q1, q2). Тогда  = 
= x0 a + y0 b, p = p1 a + p2 b, q = q1 a + q2 b.

Найдем зависимость между старыми x, y и новыми x͂, y͂ коорди-
натами точки M:

Рис. 8.11

Из рисунка видим, что  =  +  или  =  + , 
поэтому

x a + y b = (x͂ p + y͂ q) + (x0 a + y0 b), 
x a + y b = (x͂ (p1 a + p2 b) + y͂ (q1 a + q2 b)) + (x0 a + y0 b), 
x a + y b = (p1 x͂ + q1 y͂ + x0) a + (p2 x͂ + q2 y͂ + y0) b.

Поскольку координаты вектора  в базисе a, b определены 
однозначно, то

x = p1 x͂ + q1 y͂ + x0, 
y = p2 x͂ + q2 y͂ + y0. (8.1)
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Формулы (8.1) выражают зависимость старых аффинных 
координат x, y точки M от ее новых координат x͂, y͂. Заметим 
что столбец коэффициентов при x͂ в правой части формул (8.1) – 
это координаты вектора p, столбец коэффициентов при y͂ – коорди-
наты вектора q, а столбец свободных членов – координаты начала 
O͂ нового репера R͂.

В том случае, когда реперы R и R͂ отличаются только началом, 
т.е. R = O a b, R͂ = O͂ a b, 

формулы (8.1) принимают совсем простой вид
x = x͂ + x0, 
y = y͂ + y0 (8.2)

так называемых формул переноса начала координат.
Определение 8.3. Уравнением геометрической фигуры Ф (лю-

бого множества точек плоскости) в аффинном репере R называется 
уравнение F (x, y) = 0, которому удовлетворяют координаты x, y 
каждой точки этой фигуры и не удовлетворяют координаты точек, 
не принадлежащих фигуре Ф.

Если (x + 3) ² + (y – 5) ² = 16 – уравнение окружности с центром 
в точке C (– 3, 5) и радиусом 4, записанное в ортонормированном 
репере R = O i j, то в ортономированном репере R = C i j уравнени-
ем этой окружности будет x͂2 + y͂2 = 16.

Аналогично поступали в школе с уравнениями y – 5 = (x + 3)², 
y – 5 = sin (x + 3) и т.д.

Так как векторы p, q не коллинеарны, то их координаты не про-
порциональны. Это позволяет разрешить систему (8.1) относи-
тельно x͂, y͂ и из полученных формул

x͂͂ = a1 x + b1 y + x͂0, 
y͂ = a2 x + b2 y + y͂0, 

выражающих зависимость между новыми x͂, y͂ и старыми x, y 
координатами точки M, определить координаты векторов a, b ста-
рого базиса относительно нового базиса p, q, а также координаты 
старого начала O в новом репере R͂ = O͂ p q.

Например, если положение нового репера R͂ относительно ста-
рого R задано так:

O͂ (1, – 1), p (2, 1), q (1, 1),
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то старые координаты х, у выражаются через новые x͂, y͂ по фор-
мулам

x =  2x͂ + y͂ + 1, 
y =  x͂ + y͂ – 1, 

а новые через старые (проделайте выкладки самостоятельно!) – 
по формулам

x͂ =  x – y – 2,
y͂ = – x + 2y + 3.

Отсюда заключаем, что O (– 2, 3) в новом репере R͂, а a (1, – 1), 
b (– 1, 2) в новом базисе p, q.

Попробуйте аккуратно изобразить исходный (произвольный!) 
аффинный репер R, затем – R͂ (учитывая данные в условии коорди-
наты нового начала и новых базисных векторов), а также «увидеть» 
на этом чертеже то, что мы нашли выше алгебраическим способом.

Переход от одного аффинного репера к другому (замену коор-
динат) используют при решении самых разных задач, в том числе 
и достаточно трудных (примером может служить задача о приведе-
нии общего уравнения линии второго порядка, записанного в орто-
нормированном  репере, к так называемому каноническому виду). 
Мы же проиллюстрируем сказанное на более простых примерах.

1) В школьных учебниках, где, напомним, используется прямо-
угольная декартова система координат (ортонормированный репер 
R = O i j), рассматривают, в частности, такую задачу: что определя-
ет уравнение x² + y² – 2x + 6y – 35 = 0?

Выделяя полный квадрат, уравнение геометрической фигуры 
записывают в виде (x – 1)² + (y + 3)² = 25 и узнают в этом уравнении 
уравнение окружности с центром в точке C (1, – 3) и радиусом 5. 
Мы же говорим, что в новом репере R͂ = С i j уравнение записы-
вается как x͂2 + y͂2 = 25, а формулы x͂ = x – 1, y͂ = y + 3 или, скорее, 
x = x͂ + 1, y = y͂ – 3 определяют переход к этому реперу R͂ = C i j.

2) Что в прямоугольной декартовой системе координат опреде-
ляется следующим уравнением:

х ² + y ² – 2x + 6y – 35 + | x ² + y ² – 2x + 6y – 35 | = 0?
После переноса начала координат в точку C (– 1, 3) это уравне-

ние примет более простой вид
x͂2 + y͂2 – 25 + | x͂2 + y͂2 – 25 | = 0.
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Если x͂2 + y͂2 ≤ 25, т.е. точка M (x͂, y͂) принадлежит кругу с цен-
тром C и радиусом 5, то последнее уравнение обращается в тож-
дество. Если же x͂2 + y͂ 2 > 25, т.е. точка M (x͂, y͂) лежит вне этого 
круга, то это уравнение обращается в неверное числовое равенст-
во. Таким образом, данное уравнение является  уравнением круга 
с центром C (– 1, 3) и радиусом 5.

Вопрос. Что определяет уравнение x² + y² – 2x + 6y – 35 –
– | x² + y² – 2x + 6y – 35 | = 0? Система координат – прямоугольная 
декартова.

Рассмотрим хорошо известное школьное уравнение гиперболы 
x ∙ y = 1 и сделаем замену координат

x = x͂ – y͂, 
y = x͂ + y͂, 

т.е. перейдем от ортонормированного репера R = O i j к орто-
гональному Ȓ  = O m n, где начальная точка O – та же, а векторы 
m (1, 1) и n (– 1, 1) имеют одинаковую длину  и взаимно перпен-
дикулярны. В новом репере уравнение гиперболы примет вид

x̑2 – y̑2 = 1.
Если же векторы m и n длины  заменить их ортами, т.е. 

векторами того же направления, но единичной длины: p (1 / , 
1 / ), q (– 1 / , 1 / ) и, таким образом, от ортогонального ре-
пера Ȓ  перейти к ортонормированному реперу R͂ = O p q, то в нем 
мы получим уравнение гиперболы вида

(x͂ / )2 – (y͂ / )2 = 1:

Рис. 8.12
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Формулы перехода от промежуточного репера Ȓ  к ортонорми-
рованному реперу R͂ имеют вид

x̑ = 
 
x͂, 

y̑  =      
 
y͂.

Вопросы: 1) Как получить формулы перехода от исходного ре-
пера R к реперу R͂?

2)* Верно ли, что в любом аффинном репере уравнение 
x² + y² = 1 определяет окружность с центром в начале координат 
и радиусом 1? Каким должен быть репер, чтобы это уравнение 
было: a) уравнен ием окружности; b) уравнением окружности ра-
диуса 1?

Пусть теперь R = O a b – произвольный аффинный репер или об-
щая декартова система координат x O y, а A x + B y + C = 0 – ли-
нейное уравнение (здесь A, B, C – действительные числа, причем 
A² + B² > 0, т.е. хотя бы один из старших коэффициентов A, B отли-
чен от нуля). Если A ≠ 0, то заменой

x͂ = A x + B y + C, 
y͂ =     y

мы приводим линейное уравнение A x + B y + C = 0 к виду x͂ = 0. 
Выразим x, y через x͂, y͂ получим:

x = , 

y =   y͂.

Эти равенства означают (см. (8.1)), что мы от исходного аффин-
ного репера R = O a b перешли к новому R͂ = O͂ p q, где

O͂ (– C / A, 0), p (1 / A, 0), q (– B / A, 1).
Выше говорилось, что x͂ = 0 – уравнение оси ординат репера R͂. 

Таким образом, линейное уравнение A x + B y + C = 0 в аффин-
ном репере R определяет прямую d с направляющим вектором 
m (–B, A). Здесь для простоты вместо направляющего вектора q оси 
ординат репера R͂ мы берем коллинеарный ему вектор m (– B, A).
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При B ≠ 0 (если A = 0) приходим к такому же результату, только 
вместо рассмотренной выше замены мы используем другую:

x͂ =  x,
y͂ = A x + B y + C.

При изучении теории и при решении задач, связанных с пря-
мыми, которые в аффинном репере задаются уравнениями первого 
порядка A x + B y + C = 0, стараются использовать наиболее удоб-
ный репер. То же относится и к линиям второго порядка, общее 
уравнение которых в аффинном репере имеет вид

A x² + B x y + C y² + D x + E y + F = 0
(среди старших коэффициентов A, B, C по крайней мере один 

должен быть отличным от нуля!).
Если в общее уравнение прямой A x + B y + C = 0 или в об-

щее уравнение линии второго порядка A x² + B x y + C y² + D x + 
+ E y + F = 0 вместо x и y подставить их выражения (8.1), полу-
чим уравнение геометрической фигуры в новом аффинном репе-
ре R͂. После приведения подобных членов становится понятным, 
что степень уравнени я не повысилась. Но она не может и пони-
зиться, так как тогда при обратном переходе от R͂ к R мы бы не вер-
нулись к исходному уравнению. Поэтому порядок линии (первый, 
второй и т.д.) не зависит от выбора аффинного репера.

Линии первого порядка – прямые. С теорией линий второго по-
рядка можно ознакомиться, например, по любому учебному пособию 
по геометрии для студентов математических факультетов педагогиче-
ских вузов: это – эллипсы, гиперболы, параболы и еще 6 видов линий.

Вопрос. Почему эллипсы, гиперболы и параболы называют ко-
ническими сечениями?

Задача. В аффинном репере заданы уравнения: 1) x – y + 1 = 0; 
2) (x + 2y + 3) ² + (4x + 5y + 6) ² = 7; 3) (x + 1) (18x + 3y) = 1951; 
4) π x + e y = 1872; 5) (18x + y + 2) ² – x – y = 0; 6) (3x + 9y + 1) 
(x – 2y + 6) = 0; 7) y – 26 = (x + 7y) ³; 8) (x + 26y – 11) (9x + 11y + 1950) = 0; 
9) | x + y | + | x – y | = 0; 10) | x² – y² | = 1;  11) x2 + y2 = – 1; 12) (x – 18)2 +
+ (y – 3) 2 = 0.

Найдите среди уравнений 1–12 уравнения прямых и для каж-
дой из них укажите точку и направляющий  вектор. Попробуйте 
также понять, что определяют остальные уравнения.



209

Глава 8. Геометрические преобразования плоскости

8.3. РАЗЛИЧНЫЕ ВИДЫ УРАВНЕНИЙ ПРЯМОЙ НА 
ПЛОСКОСТИ В АФФИННОМ РЕПЕРЕ

1) Если прямая d (фр. droite) задана точкой P (нем. Punkt) и на-
правляющим вектором m (m ≠ 0), то точка M  d iff (iff означа-
ет if and only if, т.е. если и только если – мы будем пользоваться 
этим удоб ным сокращением; французский вариант, если кому-то 
не нравится американский, ssi – si et seulement si)

Рис. 8.13

 || m iff
  = t m,  (8.3)

где t – некоторое действительное число.
Уравнение (8.3) называется векторным параметрическим урав-

нением прямой d (t – параметр). Отметим тот факт, что для этого 
уравнения не нужен аффинный репер.

Задача 8.7. Пусть прямая d задана точкой P и направляющим 
вектором m (см. рис.) Постройте точки M прямой d, соответствую-
щие значениям параметра t = 0, .

Рис. 8.14

2) Пусть на плоскости задан аффинный репер R = O a b. Если 
в этом репере точка P (p1, p2), а точка М (х, y), то  (x – p1, 
y – p2), так как он равен разности радиус-векторов точек M и P. 
Если направляющий вектор m (m1, m2), то векторное параметриче-
ское уравнение (8.3) в координатах примет вид (x – p1, y – p2) = t (m1, 
m2) , откуда следует, что x – p1 = t m1, 
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y – p2 = t m2 или
 x = m1 t + p1,  
 y = m2 t + p2. (8.4)

Уравнения (8.4) называются параметрическими уравнениями 
прямой d. Здесь первый столбец – координаты текущей точки М 
прямой d, столбец коэффициентов при параметре t – координаты 
на п равляющего вектора m, столбец свободных членов – координа-
ты начальной точки P этой прямой.

Задача 8.8. Запишите параметрические уравнения следую-
щих прямых: a) оси абсцисс; b) оси ординат; c) прямой, про-
ходящей через начало координат O, с направляющим вектором 
m (1, 1); d) прямой d с начальной точкой P (2, 5) и направляющим 
вектором m (–3, 1).

Вопрос. Проходит ли прямая из задания d) через начало коор-
динат?

3) Из системы (8.4), где m1
2 + m2

2 > 0 (почему?), можно исклю-
чить параметр t и получить зависимость между координатам и x, y 
текущей точки М этой прямой. Например, пусть параметрические 
уравнения прямой d имеют вид:

x = 3t + 1,
y = 4t + 5.

Домножим обе части первого уравнения на 4, второго – на (–3). 
Сложение левых и правых частей полученных уравнений дает 4x – 
– 3y = – 11 или 4x – 3y + 11 = 0. 

Заметим, что в полученном общем уравнении A x + B y + C = 0 
прямой d (–B, A) – координаты направляющего вектора m  этой 
прямой.

В аффинном репере R любое линейное уравнение A x + B y + 
+ C = 0 (A² + B² > 0) определяет  прямую с направляющим вектором 
m (– B, A). На самом деле, если составить параметрические урав-
нения прямой d с направляющим вектором m (– B, A), проходящей 
через некоторую точку P (p1, p2), координаты которой удовлетворя-
ют уравнению A x + B y + C = 0 (A p1 + B p2 + C = 0 – верное число-
вое равенство), получим:

x = – B t + p1,
y =  A t + p2.
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Домножая обе части первого уравнения на A, второго – на B 
и почленно складывая полученные уравнения, мы исключаем па-
раметр t и приходим к уравнению A x + B y = A p1 + B p2, которое 
совпадает с исходным уравнением A x + B y + C = 0 в силу того, 
что A p1 + B p2 = – C.

Линейное уравнение
 A x + B y + C = 0 (8.5)

называется общим уравнением прямой.
Задача 8.9. Докажите, что прямая d с общим уравнением 

A x + B y + C = 0: а) параллельна оси абсцисс Ox iff A = 0; b) парал-
лельна оси ординат Oy iff B = 0; c) проходит через начало коорди-
нат точку O iff C = 0. Параллельность прямых здесь понимается, 
конечно, в широком смысле (когда любая прямая считается также 
параллельной самой себе).

4) Уравнение любой прямой, проходящей через точку P (p1, p2), 
может быть записано в виде
 A (x – p1) + B (y – p2) = 0 (A 2 + B2 > 0). (8.6)

Действительно, прямая с общим уравнением A x + B y + C = 0 
проходит через точку P (p1, p) iff справедливо равенство A p1 +
+ B p2 + C = 0iff (подставьте в общее уравнение C = – A p1 – B p2!) 
A (x – p1) + B (y – p2) = 0.

5) Уравнение прямой d, не проходящей через начало координат 
и пересекающей ось абсцисс в точке X (a, 0), а ось ординат – в точ-
ке Y (0, b), может быть записано в виде

  +  = 1 (8.7)

и называется уравнением прямой в отрезках. Как получается 
уравнение (8.7)? Можно взять уравнение (8.6) любой прямой d, 
проходящей через точку X (a, 0), и потребовать, чтобы d проходила 
через точку Y (0, b). Из A (0 – a) + B (b – 0) = 0 получим: A a = B b. 
Уравнение A (x – a) + B (y – 0) = 0 перепишется в виде A x +
+ B y = A a.

Так как рассматриваемая нами прямая d не параллельна ни од-
ной из осей коор динат, то в данном случае старшие коэффициен-
ты A и B оба отличны от нуля. Поскольку прямая d не проходит 
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через начало координат, то обе координаты a и b также не нули. 
Поэтому последнее уравнение можно разделить на A a ( = B b). 
В результате мы и получим уравнение (8.7). 

Задача 8.10. Прямая d проходит через точку P (4, 3) и отсекает 
на осях координат отрезки равной длины. Найти уравнение этой 
прямой, если: a) координатные векторы a, b репера R имеют рав-
ные длины, т.е. |a| = |b|; b)* |a| = 2 |b|.

Решение. В обоих случаях одной из искомых прямых будет пря-
мая OP, проходящая через начало координат O (0, 0). Ее уравне-
ние: 3x – 4y = 0 (Почему?) Как найти другие решения? a) Если 
|a| = |b|, то точками X, Y пересечения d с осями абсцисс и ординат 
могут быть

X (z, 0), Y (0, z) или X (z, 0), Y (0, – z). Уравнение прямой в отрез-
ках в первом случае записывается в виде x / z + y / z = 1, во втором – 
в виде x / z + y / (–z) = 1.

Прямая d проходит через данную точку P (4, 3) при z = 7 в пер-
вом случае и при z = 1 – во втором. Мы нашли три прямые, удов-
летворяющие всем требованиям задачи. Их уравнения: 3x – 4y = 0, 
x + y = 7 и x – y = 1.

b) Если же |a| = 2 |b|, то точки X и Y пересечения прямой d 
с осями координат будут такими:

X (z, 0), Y (0, 2z) или X (z, 0), Y (0, – 2z). Уравнение искомой пря-
мой в отрезках имеет вид

 +  = 1 или  +  = 1.

Подставляя в каждое из этих уравнений координаты данной 
точки P (4, 3), находим соответствующие значения z: 11 / 2 и 5 / 2. 
И в этом случае три прямые удовлетворяют всем требованиям за-
дачи. Их уравнениями будут: 3x – 4y = 0, 2x + y = 11 и 2x – y = 5.

6) Пусть прямая d на евклидовой плоскости задана точкой P 
и вектором n, перпендикулярным прямой d (его называют векто-
ром нормали прямой d, а нормалью – любую прямую n, которая 
перпендикулярна d). Тогда точка M  d
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Рис. 8.15

iff   n iff скалярное произведение  ∙ n равно нулю. Урав-
нение прямой d, таким образом, записывается в виде

   ∙ n = 0. (8.8)
Это – еще одно векторное уравнение прямой. Оно так же, 

как векторное параметрическое уравнение прямой (8.3), не требу-
ет введения на плоскости какой-либо системы координат.

Замечание. Рассмотренными нами видами уравнений прямой 
(есть и другие!) можно, естественно, пользоваться и в ортонорми-
рованном репере, т.е. в прямоугольной декартовой системе коорди-
нат. Для этого частного, но весьма важного случая, мы рассмотрим 
еще несколько видов уравнений прямой.

7) Пусть на евклидовой плоскости задан ортонормированный 
репер R = O i j, в котором точка P (p1, p2), текущая точка прямой d 
M (x, y), а вектор нормали n (n1, n2) в базисе i, j. Так как  = 
= , то этот вектор  (x – p1, y – p2) в базисе i, j. Векторное 
уравнение (8.8) прямой d в координатах запишется так:
 n1 (x – p1) + n2 (y – p2) = 0. (8.9)

Если это уравнение переписать в виде n1 x + n2 y – (n1 p1 +
+ n2 p2) = 0, то можно заметить, что коэффициентами при x и y в об-
щем уравнении прямой d, записанном в ортонормированном (!) 
репере, служат координаты вектора нормали прямой d, т.е. вектор 
n (A, B) перпендикулярен прямой d с общим уравнением A x +
+ B y + C = 0. Напомним, что вектор m (–B, A) – 

направляющий 
вектор прямой d. Последнее справедливо в любом (!) аффинном 
репере, в том числе и в ортонормированном.
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Задача 8.11. На прямой x + 2y – 1 = 0 и на осях прямоуголь-
ной декартовой системы координат найти точки, равноудаленные 
от точек A (– 2, 5) и B (0, 1).

Задача 8.12. Написать уравнения всех сторон квадрата ABCD, 
вписанного в окружность x² + y² = 169, если известны координаты 
одной вершины A (5, –12). Система координат – прямоугольная де-
картова.

Задача 8.13. Написать уравнение прямой, которая проходит че-
рез точку A (8, 6) и образует с осями прямоугольной декартовой 
системы координат треугольник, площадь которого равна 1 2.

Задача 8.14. Доказать, что угол φ между прямыми d и d̅, ко-
торые заданы своими общими уравнениями в ортонормированном 
репере: A x + B y + C = 0, A̅ x + B̅ y + C̅ = 0, может быть найден 
по формуле

  cos φ = | A A̅ + B B̅ | / (  ∙ ). (8.10)
Указание. Воспользуйтесь координатами векторов нормалей 

этих прямых.
Отсюда, в частности, следует, что прямые d и d̅ будут перпенди-

кулярны iff A A̅ + B B̅ = 0.
Задача 8.15.* Доказать, что в ортонормированном репере рас-

стояние от точки W (u, v) до прямой d: A x + B y + C = 0 можно 
находить по формуле

 ρ (W, d) = |A u + B v +C| / . (8.11)

Задача 8.16. Записать уравнение прямой d, которая проходит 
через точку Р (5, 2) и пересекает прямую m: x = y под углом 60°. 
Система координат – прямоугольная декартова.

Решение  основано на применении формулы (8.10). Ищем урав-
нение прямой d в виде (8.9), т.е. в виде n1 (x – 5) + n2 (y – 2) = 0.

Так как m (1, –1) является вектором нормали прямой m, то угол 
между этим вектором и вектором нормали n (n1, n2) искомой пря-
мой d равен 60°. По формуле (8.10)

 = | n1 – n2 | / (  ∙ (n1
2 + n2

2)½).
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Из квадратного уравнения n1 
2 – 4n1 n2 + n2 

2 = 0, полагая, для удоб-
ства, n1 = 1, находим два вектора нормали n с координатами (1, 
2 – ) и (1, 2 + ) соответственно. Получим две прямые d, урав-
нения которых имеют вид x – 5 + (2 – ) (y – 2) = 0 и x – 5 + (2 +
+ ) (y – 2) = 0. Можно раскрыть скобки и привести подобные 
члены, но стоит ли это делать в данном случае?

Задача 8.17. Найти геометрическое место точек (ГМТ) плос-
кости, удаленных от прямой d: x – y = 0 на расстояние, равное 1. 
Система координат – прямоугольная декартова.

Решение основано на применении формулы (8.11). 
M (x, y)  ГМТ iff ρ (M, d) = 1 iff
iff | x – y | =  iff x – y = ±  iff x – y   = 0. Искомым ГМТ 

оказалась пара прямых, параллельных прямой d. Их уравнениями 
будут x – y –  = 0 и x – y +  = 0:

Рис. 8.16

Задача 8.18. Найти ГМТ, равноудаленных от прямых m и n, 
которые в ортонормированном репере заданы уравнениями: 
a) x – y + 3 = 0, x – y + 5 = 0; b) 3x + 4y – 7 = 0, 3x – 4y + 1 = 0.

Решение этой задачи также основано на применении формулы 
(8.11). M (x, y)  ГМТ iff ρ (M, m) = ρ (M, n) iff 
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a) | x – y – 3 | /  = | x – y – 5 | /  iff x – y – 3 = ± (x – y – 5) iff 
x – y – 4 = 0 (серединная прямая, которая является осью симметрии 
заданных в условии параллельных прямых):

Рис. 8.17

b) | 3x + 4y – 7 | /  = | 3x – 4y + 1 | /  iff 3x + 4y – 7 = ± (3x –
– 4y + 1) iff

y – 1 = 0 или x – 1 = 0 (взаимно перпендикулярные прямые, ко-
торые являются осями симметрии пары пересекающихся прямых 
m и n):

Рис. 8.18

Задача 8.19. Написать уравнение окружности, концентриче-
ской с окружностью x² + y² – 4x + 6y – 17 = 0, которая касается пря-
мой 3x – 4y + 7 = 0. Система координат – прямоугольная декартова.

Задача 8.20. Найти расстояние между прямыми: a) x – y = 0 
и x – y + 2 = 0; b) 3x – 4y + 5 = 0 и 6x – 8y + 5 = 0; c) x – y + 2 = 0 
и 3x – 4y + 5 = 0.

Замечание. Что понимается под расстоянием между двумя 
плоскими геометрическими фигурами Ф и Ф*? Если Ф = {A} 
и Ф* = {B} – одноточечные множества, то ρ (Ф, Ф*) = AB – это рас-
стояние между точками A и B. Если Ф = {A}, а Ф* – прямая d (мно-
жество точек прямой d), то ρ (Ф, Ф*) – длина перпендикуляра AH, 
проведенного из точки A к прямой d. А что такое расстояние между 



217

Глава 8. Геометрические преобразования плоскости

двумя параллельными прямыми m и n (множествами Ф и Ф* точек 
прямых  m и n)? А если m и n пересекаются? Что такое расстояние 
от точки до окружности? между двумя окружностями? Можно ска-
зать, что это – наименьшее из расстояний между точками M и M*, 
где M  Ф, а M*  Ф*. Но чему равно расстояние между гиперболой 
Ф: x ∙ y = 1 и фигурой Ф*: x ∙ y = 0 (множеством точек координат-
ных осей O x и O y)? Интуитивно понятно, что здесь ρ (Ф, Ф*) = 0, 
но ведь у этой гиперболы и координатных осей нет общих точек 
(так же, как и у гипербол x ∙ y = 1 и x ∙ y = – 1). Здесь определение 
расстояния более сложно – оно использует понятие точной нижней 
грани расстояний между точками этих фигур, и мы его рассматри-
вать не будем.

Задача 8.21. Найти расстояние между геометрическими фи-
гурами Ф и Ф*, заданными в прямоугольной декартовой систе-
ме координат своими уравнениями: 1) x² + y² – 2x + 4y + 4 = 0 
и x² + y² – 8x – 4y + 20 = 0; 2) x² + y² = 25 и x² + y² – 12x – 16y + 96 = 0; 
3) x² + y² = 25 и x² + y² – 2  x + 2  y + 3 = 0; 4) x² + y² = 200 и x² + y² –
– 20x + 20y + 198 = 0; 5) x² + y² + 2x + 4y + 1 = 0 и x² + y² + 4y + 3 = 0; 
6) x² + y² + 6x – 8y – 29 = 0 и x – y = 0.

8.4. ПРИМЕНЕНИЕ КООРДИНАТНОГО МЕТОДА 
К РЕШЕНИЮ ЗАДАЧ

Определение 8.4. Говорят, что точка M делит направленный от-
резок AB в отношении λ (λ  R, λ ≠ –1) и пишут λ = (AB, M), если

AM = λ MB. (8.12)
Число λ называют отношением трех (коллинеарных!) точек A, 

B, M.
Пусть точки D, A, M, B, E делят отрезок CF на 6 равных частей:

Рис. 8.19
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Найдем отношение λ, в котором каждая из точек A, B, C, D, E, 
F, M делит направленный отрезок AB. Для этого в определяющее 
соотношение (8.12) вместо M подставляем поочередно точки A, B, 
C, D, E, F, M. Получим:

AA = λ AB, AB = λ BB, AC = λ CB , ..., AM = λ MB, 
откуда следует, что в первом случае λ равно нулю, во втором – 

такого числа λ не существует, а остальные пять значений λ соответ-
ственно равны – 1 / 2, – 1 / 3, – 3, – 2, 1.

Вопросы: 1) Верно ли, что точка М лежит между точками A и B 
iff (AB, M) > 0?

2) Где расположена точка М, если о числе λ = (AB, M) извест-
но следующее: a) λ  (– ∞, –1); b) λ  (–1, 0); c) λ→0; d) λ→1; 
e) λ→+ ∞; f) λ→– ∞; g) λ→–1 слева; h) λ→–1 справа? 

3) Верно ли, что каждому действительному значению λ = (AB, M) 
соответствует единственная точка M прямой AB?

Выведем формулы, выражающие координаты точки M, которая 
делит направленный отрезок AB в данном отношении λ, через ко-
ординаты точек A и B.

Пусть на плоскости задан аффинный репер R = O a b, тогда A 
(a1, a2), B (b1, b2), M (x, y). Так как MB = MA + AB = AB – AM, то ра-
венство (8.12) может быть записано в виде AM = λ (AB – AM ), 
откуда следует, что (1 + λ) AM = λ AB, а так как 1 + λ ≠ 0 (λ ≠ – 1), то 

AM = .
В координатах:

(x – a1, y – a2) =  (b1 – a1, b2 – a2), 
откуда мы и находим выражения координат точки М через коор-

динаты точек A, B и отношение λ:

x = a1 +  (b1 – a1), 

y = a2 +  (b2 – a2), 
или

 x =  a1 +  b1,  

 y =  a2 +  b2,  (8.13)



219

Глава 8. Геометрические преобразования плоскости

При λ = 1 получим знакомые вам из школы (там – в прямоуголь-
ной декартовой системе координат!) формулы

x =  (a1 + b1), 

 y =  (a2 + b2),  (8.14)
по которым находятся координаты середины отрезка AB (на-

правленного?).
При λ = 0 получаются координаты точки A: x = a1, y = a2.
Вопрос. Существует ли значение λ, при котором формулы (8.13) 

дают координаты точки B?
Рассмотрим несколько примеров, показывающих, как исполь-

зуются эти формулы.
Задача 8.22. Выразить координаты центра тяжести М треуголь-

ника ABC (М – точка пересечения медиан треугольника ABC) че-
рез координаты вершин треугольника.

Рис. 8.20

Попробуйте решить эту задачу самостоятельно.
Задача 8.23. Доказать, что середины оснований, точка пересе-

чения диагоналей и точка пересечения продолжений боковых сто-
рон любой трапеции коллинеарны, т.е. лежат на одной прямой.

Для доказательства свяжем с трапецией удобный аффинный ре-
пер R = O a b (см. рис. 8.21):
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Рис. 8.21

базисные векторы которого a = OA, b = OB. Так как треуголь-
ники ODC и OAB гомотетичны, то OD = k a, OC = k b, где k – ко-
эффициент гомотетии (0 < k < 1). Тогда O (0, 0), A (1, 0), B (0, 1), 
C (0, k), D (k, 0).

Так как M и N – середины оснований AB и CD, то по (8.14): 
M (½, ½), N (k / 2, k / 2).

Треугольники ECD и EAB гомотетичны с отрицательным ко-
эффициентом гомотетии (– k). Поскольку DE / BE = k, то точка E 
делит направленный отрезок DB в отношении λ = k (DE = k EB!).

По формулам (8.13) выражаем координаты точки E через коор-
динаты точек D и B:

x =   k +  0, 

y =  0 +  1.
Четыре точки M (½, ½), N (k / 2, k / 2), E ( , ) и O (0, 0), 

о которых говорится в условии задачи, коллинеарны, так как все 
они лежат на прямой с уравнением x = y.

Попробуйте решить эту задачу при помощи векторов, без ис-
пользования аффинного репера.

Задача 8.24. Найти и построить точку М отрезка AB, для кото-
рой выполнено следующее условие:
 AB : AM = AM : MB. (8.15)

Пусть (AB, M) = λ, тогда λ > 0 (почему?), AМ = λ MB и поэтому 
AM = λ MB. Так как AB = AM + MB = (λ + 1) MB, то в силу усло-
вия (8.15)
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 =  или λ2 – λ – 1 = 0.

Положительным корнем этого уравнения будет число λ = . 
Подумайте, как, используя соотношение AM =  MB, теоремы 
Пифагора и Фале́са, можно построить точку М.

Замечание. Прямоугольник со сторонами MB и AM = MB 
подобен банковской и другим пластиковым картам и имеет форму 
так называемого золотого прямоугольника или Божественного се-
чения (пропорции) (см., например, книгу «Золотое сечение» попу-
лярной серии «Мир математики», М., 2013).

Задача 8.25. Точка M делит сторону AB параллелограмма ABCD 
в отношении λ, λ > 0. Найти отношение, в котором отрезок DM де-
лит диагональ AC.

Решение. Из школьного курса геометрии известен вариант этой 
задачи с числом λ, равным 1, т.е. когда M – середина стороны AB. 
Для нее ответ может быть получен при помощи красивого допол-
нительного построения и теоремы Фалеса. Мы же свяжем, на этот 
раз с параллелограммом, удобный аффинный репер R = O a b, где 
O = A, a = AB, b = AD:

Рис. 8.22

Тогда A (0, 0), B (1, 0), D (0, 1), C (1, 1). С учетом (8.13) M ( , 0).
Обозначим искомое отношение (AC, E) буквой μ: AE = μ EC. 

В силу (8.13) E ( , ). Прямая DМ пересекает оси абсцисс и ор-
динат в точках M ( , 0) и D (0, 1) соответственно, а поэтому ее 
уравнение может быть записано в виде (см.  (8.7))
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 +  = 1.

Так как E – точка прямой DM, то ее координаты удовлетворяют 
уравнению этой прямой. Обозначим отношение  буквой v, тогда 
v может быть найдено из уравнения

(λ + 1) v + λ v = λ.
Так как v ∙ (2 λ + 1) = λ , то v = . Осталось найти μ из уравне-

ния  = . Получим μ = .

Замечание. При λ = 1, т.е. когда M – середина стороны AB, по-

лучим μ = 1 / 2, так что в этом случае DM будет отсекать треть 
диагонали AC.

Если же точка M делит сторону AB в отношении 1 : 9 (λ = 1 / 9), 
отрезок DM будет делить диагональ AC в отношении 1 : 10 
(μ = 1 / 10).

8.5. МЕТОД КООРДИНАТ И НЕКОТОРЫЕ 
ГЕОМЕТРИЧЕСКИЕ МЕСТА ТОЧЕК (ГМТ)

В школьной программе по геометрии рассматриваются такие 
геометрические места точек (ГМТ) плоскости как серединный 
перпендикуляр (множество всех точек плоскости, равноудаленных 
от данных точек A и B), окружность (множество всех точек плоско-
сти, удаленных от данной точки C на данное расстояние r) и неко-
торые другие. Их, в частности, используют при решении различ-
ных геометрических задач на построение циркулем и линейкой.

Познакомимся еще с некоторыми ГМТ плоскости, которые 
оказываются полезными при решении достаточно сложных задач 
на построение, а также с геометрическим свойствами линий вто-
рого порядка, графики которых вы часто строили на уроках мате-
матики (параболы и гиперболы).

Задача 8.26. Найти ГМТ плоскости, сумма квадратов расстоя-
ний которых до заданных точек A и B есть величина постоянная, 
равная квадрату данного отрезка m.



223

Глава 8. Геометрические преобразования плоскости

Решение. Введем ортонормированный репер R = O i j , где O – 
середина отрезка AB, а i сонаправлен с вектором AB:

Рис. 8.23

Если длина отрезка AB равна 2c, то A (– c, 0), B (c, 0). Тогда
M  ГМТ iff AM² + BM² = m² iff [ (x + c)² + y² ] + [ (x – c)² + 

+ y² ] = m² iff x² + y² =  m2 – c². 
(Мы воспользовались формулой, выражающий расстояние 

между двумя точками в ортонормированном репере.) Видим, 
что искомое ГМТ – это окружность с центром О и радиусом r 
(r2 =  (m2 – 2c2)), если m² > 2c² (m >  c); точка О, если m² = 2c², 
т.е. m =  c; пустое множество , если m² < 2c² (m <  c).

Вопрос. Как построить это ГМТ?
Задача 8.27. Найти ГМТ плоскости, отношение расстояний ко-

торых до заданных точек A и B равно отношению данных отрезков 
m и n, где m > n.

Решение. Пусть ортонормированный репер R = O i j выбран так, 
что его начало O помещено в точку A, а вектор i сонаправлен с век-
тором AB:

Рис. 8.24
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Если AB = c, то A (0, 0), B (c, 0). Тогда
M  ГМТ iff AM / BM = m / n iff AM² / BM² = m² / n² iff n² AM² = 

= m² BM² iff
n² [x² + y² ] = m² [ (x – c)² + y² ] iff (m² – n²) (x² + y²) – 

– 2m² c x + m²c² = 0 iff
(делим обе части уравнения на m² – n² > 0 и вводим обозначения 

для громоздких коэффициентов) iff (x – k)² + y² = k² – l².
Что определяет это уравнение в ортонормированном репере? 

Это будет окружность с центром  в точке K (k, 0), если k² – l² > 0; 
точка K (k, 0) – при k² – l² = 0; пустое множество  – при k² – l² < 0.

Так как ГМТ симметрично относительно прямой AB, 
а на этой прямой всегда есть две точки нашего ГМТ (см. рис., 
на котором эти точки C и D делят отрезок AB в данном отно-
шении m / n внутренним и внешним образом: AC / BC = m / n 
и AD / BD = m / n):

Рис. 8.25

то рассматриваемое ГМТ на самом деле всегда представляет со-
бой окружность с диаметром CD. Последний рисунок показывает 
нам простой способ построения данного ГМТ, известного под на-
званием окружности Аполлония (III век до н.э.).

Вопрос. Что происходит с окружностью Аполлония, если: 
1) отношениe m / n стремится к 1; 2) отношение m / n стремится 
к бесконечности?
Указание. Зафиксируйте на рисунке отрезок m, изменяйте n 

и следите за поведением точек C и D.
Замечание. Радиус окружности Аполлония rA выражается че-

рез длины отрезков AB, m и n по формуле
rA= (mn / (m ² – n ²)) ∙ AB.
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Попробуйте доказать это самостоятельно, основываясь либо 
на уравнении окружности Аполлония, либо на последнем чертеже, 
где строится диаметр окружности Аполлония.

Задача 8.28. Найти ГМТ плоскости, равноудаленных от данной 
прямой d и не лежащей на ней точки F.

Решение. Совместим начало ортонормированного репера
R = O i j с серединой перпендикуляра FH, опущенного из точки F 
на прямую d, а вектор j направим по лучу OF:

Рис. 8.26

Ясно, что точка О  ГМТ (см. рис.). Пусть FH = 2p – расстояние 
от точки F до прямой d. Тогда F (0, p), прямая d имеет уравнение 
y = – p или y + p = 0, и

M  ГМТ iff ρ (M, d) = OM (здесь ρ (M, d) – расстояние от точки 
M (x, y) до прямой d: y + p = 0) iff ρ2 (M, d) = OM ² iff (см. (8.11))

| y + p | ² = x ² + (y – p) ² iff y ² + 2p y + p ² = x ² + y ² – 2p y + p ² iff 
4p ∙ y = x².

Видим, что ГМТ – это парабола у =  x² с вершиной O, симме-
тричная относительно прямой FH. Tочка F называется фокусом, 
а прямая d – директрисой параболы.

Об одном интересном оптическом свойства параболы (это – 
одно из так называемых конических сечений) можно почитать 
в учебниках по геометрии, в истории об Архимеде и даже в ху-
дожественной литературе («Гиперболоид (!?) инженера Гарина» 
А.Н. Толстого).

Аналогично могут быть получены уравнения еще двух кони-
ческих сечений: эллипса (ГМТ плоскости, сумма расстояний ко-
торых до двух заданных точек A и B есть величина постоянная, 
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большая AB) и гиперболы (ГМТ плоскости, модуль разности рас-
стояний которых до двух заданных точек A и B есть положительная 
постоянная величина, меньшая рас стояния между точками A и B). 
Эти уравнения в удобных ортонормированных реперах имеют, со-
ответственно, следующий вид: x² / a² + y² / b² = 1 (a и b – большая 
и малая полуоси эллипса) и x² / a² – y² / b² = 1 (см. рис. (8.12)!).

8.6. ГЕОМЕТРИЧЕСКИЕ ЗАДАЧИ НА ПОСТРОЕНИЕ. 
МЕТОД ГЕОМЕТРИЧЕСКИХ МЕСТ ТОЧЕК

Решение задачи на построение обычно состоит из четырех 
этапов: анализа (задача предполагается решенной; от руки вы-
полняется более-менее правдоподобный чертеж и ведется поиск 
отношений между данными в задаче фигурами и искомой, ко-
торые позволили бы выполнить построение последней данны-
ми в этой задаче инструментами – обычно это циркуль и одно-
сторонняя без делений линейка); построения (данные фигуры 
предполагаются уже построенными; затем выполняются и опи-
сываются построения, цепочка которых приводит нас к искомой 
фигуре; основные построения цепочки желательно нуме  ровать, 
чтобы удобнее было записывать заключительные два этапа ре-
шения задачи); доказательства (доказываем, что построенная 
фигура удовлетворяет всем условиям задачи; этот этап необхо-
дим, поскольку на первом этапе можно предположить и «изо-
бразить» то, чего на самом деле и не существует); исследова-
ния (выясняем, когда и сколько решений имеет данная задача; 
для этого обычно просматриваются и анализируются на нали-
чие и число промежуточных результатов все звенья цепочки по-
строений).

Для проведения исследования полезно помнить что прямая d 
и окружность (O, r) не имеют общих точек, если расстояние от цент-
ра O окружности до данной прямой d больше радиуса r окруж-
ности (ρ (O, d) > r); имеют одну (две совпавших) общую точку, 
если это расстояние равно радиусу (ρ (O, d) = r) – прямая касается 
окружности; имеют две точки пересечения, если оно меньше ради-
уса этой окружности (ρ (O, d) < r) – прямая пересекает окружность:
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Рис. 8.27

Важно также знать, что взаимное расположение двух окружно-
стей (A, R) и (B, r) зависит от соотношения между расстоянием AB 
между их центрами и радиусами этих окружностей: 1) при R > r 
они не имеют общих точек, если 0 ≤ AB < R – r, а также если 
AB > R + r

Рис. 8.28

касаются – в тех случаях, когда AB = R – r (внутреннее касание) 
и AB = R + r (внешнее касание)

Рис. 8.29

пересекаются в двух точках – в остальных случаях, т.е. когда 
R – r < AB < R + r
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Рис. 8.30

2) при R = r (A ≠ B) пересечение двух окружностей может быть  
(AB > 2r); точкой (парой совпавших точек), если AB = 2r; парой точек, 
когда AB < 2r:

Рис. 8.31

Задача 8.29. Построить треугольник ABC, стороны которого со-
ответственно равны данным отрезкам a, b, c: AB = c, BC = a, CA = b.

Решение. Анализ. Если ABC – треугольник со сторонами a, b, c, 
то AB = c, а вершина C удалена от A на расстояние b, а от B – на рас-
стояние a, т.е. является точкой пересечения двух окружностей 
(A, b) и (B, a):

Рис. 8.32

Построение. 1) AB = c (обозначаем AB данный, а значит, уже 
построенный отрезок длины c); 2) окружность (A, b); 3) окруж-
ность (B, a); 4) C  окр. (A, b)  окр. (B, a); 5) треугольник ABC 
(соединяем точку C с точками A и B отрезками).
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Доказательство. В треугольнике ABC AB = c по построению 1 
(П1), BC = a по П3 и П4, CA = b по П2 и П4.
Исследование. Построения 1–3 дают каждое вполне опреде-

ленный результат. Все зависит от П4. Задача имеет единственное 
решение, если | a – b | < c < a + b. Во всех остальных случаях тре-
угольникa с такими сторонами a, b, c не существует.

Замечание. Равные треугольники (симметричные относитель-
но прямой AB) в этой задаче, естественно, считаются одним реше-
нием.

Задача 8.30. Построить треугольник ABC по основанию c, вы-
соте hс к основанию и известному отношению m : n боковых сто-
рон AC и BC (m и n – данные отрезки, причем m > n).

Решение. Анализ. Если ABC – искомый треугольник, то основа-
ние AB равно c, высота CH равна hс, AC : BC = m : n (m по условию 
больше n):

Рис. 8.33

Так как расстояние ρ (C, AB) = hс, то вершина C  ГМТ пло-
скости, удаленных от прямой AB на расстояние hс (пара прямых, 
параллельных прямой AB). Так как AC : BC = m : n, то C  ГМТ 
плоскости, отношение расстояний которых до точек A и B равно 
отношению данных отрезков m и n, где по условию m > n (окруж-
ность Аполлония). Таким образом, вершину C следует искать в пе-
ресечении двух указанных ГМТ.
Построение. 1) AB = c (концы данного отрезка c обозначаем 

буквами A и B); 2) ГМТ, удаленных от прямой AB на расстояние hс; 
3) окружность Аполлония; 4) C  ГМТ из П2  окр. Аполлония; 
5) треугольник ABC (соединяем точку C с точками A и B):
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Рис. 8.34

Замечание. Так как чертеж симметричен относительно прямой 
AB, а равные треугольники как и в предыдущей задаче следует счи-
тать за одно решение, то построение можно вести в одной полу-
плоскости с границей AB.
Доказательство. В треугольнике ABC основание AB равно c 

по П1, высота к основанию будет равна hс в силу построений П4 
и П2, AC : BC = m : n в силу построений П4 и П3.
Исследование. Оно основано на построении 4. Задача не имеет 

решений, когда ГМТ из П2 и окружность Аполлония не имеют об-
щих точек (это будет, когда hс больше радиуса окружности Апол-
лония rA = (mn / (m ² – n ²)) ∙ AB = (mn / (m ² – n ²)) ∙ c); задача имеет 
одно решение, когда hc = rA; задача имеет два решения, если hc < rA.

8.7. ПРЕОБРАЗОВАНИЯ ЕВ КЛИДОВОЙ ПЛОСКОСТИ 
И ИХ СВОЙСТВА

Выше, в первом параграфе, уже были упомянуты такие из-
вестные из школьного курса геометрии преобразования мно-
жества точек плоскости как преобразования подобия, а также 
движения плоскости. Мы начнем с более общих преобразова-
ний евклидовой плоскости – так называемых аффинных пре-
образований.
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8.7.1. Аффинные преобразования плоскости
Определение 8.5. Пусть на евклидовой плоскости заданы два 

аффинных репера R = O a b и R′ = O′ a′ b′. Если мы каждой точ-
ке M плоскости, имеющей координаты x, y в репере R, поставим 
в соответствие точку М′ с теми же координатами x, y, но в репе-
ре R′, то получим преобразование f множества точек плоскости, 
которое называется аффинным преобразованием плоскости. (То, 
что при таком соответствии f у каждой точки плоскости будет 
единственный образ и у каждой точки плоскости будет единст-
венный прообраз, т.е. соответствие f будет биекцией, проверяется 
без особого труда.) Будем говорить, что аффинное преобразование 
f = (R, R′) задано реперами R и R':

Рис. 8.35

Аффинный репер R = O a b вполне определяется тремя неколли-
неарными точками O, A, B:

Рис. 8.36

По этой причине упорядоченную тройку неколлинеарных, т.е. 
не лежащих на одной прямой точек (O, A, B) часто также называют 
аффинным репером на плоскости.
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Замечание. Если аффинное преобразование f задано парой ре-
перов R и R', то образом аффинного репера R͂ = (O͂, A͂, B͂) будет 
аффинный репер R͂′ = (O͂′, A͂′, B͂′). Так как точки O͂ и O͂′, A͂ и A͂′, B͂ 
и B͂′ в реперах R͂ и R͂′ соответственно имеют одни и те же координа-
ты, то векторы a͂ и a͂', b͂ и b͂′ будут иметь одни и те же координаты 
в базисах a, b и a′, b′ этих реперов. Поэтому формулы, выражаю-
щие координаты x, y точки M в репере R через ее координаты x͂, y͂ 
в репере R͂ будут такими же, при помощи которых координаты x′, 
y′ ее образа M′ в репере R′ выражаются через координаты точки M′ 
в репере R͂′. По этой причине аффинное преобразование f = (R, R′) 
можно задавать любой парой (R͂, R͂′) соответствующих аффин-
ных реперов.

Этим важным замечанием мы не раз будем пользоваться впо-
следствии при рассмотрении некоторых теоретических вопросов 
и при решении различных задач на преобразования.

Тождественное преобразование плоскости id, оставляющее все 
точки плоскости на месте, является аффинным: id = (R, R). Пре-
образование, обратное аффинному преобразованию f = (R, R'), яв-
ляется аффинным: f –1 = (R', R). Композиция f o g двух аффинных 
преобразований f и g также будет аффинным преобразованием 
плоскости: если f = (R, R′), а g = (R′, R''), то f o g = (R, R''). Таким 
образом, множество всех аффинных преобразований плоскости 
образуют группу – подгруппу группы всех преобразований пло-
скости (см. параграф 1).

Отметим еще некоторые свойства аффинных преобразова-
ний. Из определения аффинного преобразования можно понять, 
что если F (x, y) = 0 – уравнение некоторой плоской геометрической 
фигуры (т.е. некоторого множества Ф точек плоскости) в репере R, 
то при аффинном преобразовании f = (R, R′) образ Ф′ фигуры Ф 
(Ф′ = f (Ф)) в репере R′ описывается тем же самым уравнением 
F (x′, y′) = 0.

Поэтому при аффинных преобразованиях: прямая переходит 
в прямую; параллельные прямые – в параллельные прямые; на-
правление в широком смысле (множество всех параллельных 
прямых плоскости) – в направление; сохраняется отношение трех 
точек (AB, M) прямой, т.е. всегда (A′B′, M′) = (AB, M); сохраняет-
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ся отношение параллельных отрезков; вектор как множество всех 
направленных отрезков, которые имеют одинаковое направление 
(в узком смысле!) и одинаковую длину (с добавлением так назы-
ваемого нулевого вектора, операции сложения векторов, умноже-
ния векторов на числа и – для евклидовой плоскости – скалярного 
умножения векторов), переходит в вектор; линии второго порядка 
переходят в линии второго порядка с тем же уравнением, но в ре-
пере R′; сохраняется отношение площадей фигур (Как измеряет-
ся площадь при помощи палетки? Что происходит, когда каждый 
квад ратик на палетке разбивается на 100 более мелких квадрати-
ков и этот процесс продолжается неограниченно? Во что перехо-
дит сетка из квадратиков при аффинном преобразовании?).

Рис. 8.37

Курсивом было выделено одно из важнейших свойств аффин-
ных преобразований плоскости: прямые при любом аффинном 
преобразовании переходят в прямые. Справедливо и обратное ут-
верждение: любое преобразование множества точек плоскости, 
при котором сохраняется коллинеарность точек, будет аффинным 
преобразованием. Это свойство называют характеристическим 
свойством аффинных преобразований, его можно использовать 
при определении аффинного преобразования.
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Определение 8.6. Инвариантной фигурой аффинного преобра-
зования f называется любая фигура Ф, которая при преобразова-
нии f переходит сама в себя, т.е. для которой f (Ф) = Ф.

Вопросы: 1) Какую фигуру называют фигурой инвариантных 
точек преобразования f?

2) Что можно сказать о прямой AB, которая про ходит через ин-
вариантные точки A, B аффинного преобразования f?

3) Может ли аффинное преобразование иметь три (ровно три) 
инвариантные точки?

4) Верно ли, что любая инвариантная прямая определяет инва-
риантное направление аффинного преобразования?

5) Верно ли, что инвариантные прямые аффинного преобразо-
вания следует искать только среди прямых инвариантных направ-
лений?

6) Сравните множества инвариантных точек аффинного пре-
образования f и обратного ему преобразования f–1, а также мно-
жества инвариантных прямых и множества инвариантных фигур 
этих аффинных преобразований.

Определение 8.7. Две геометрические фигуры Ф и Ф* называ-
ются аффинно эквивалентными, если существует аффинное пре-
образование f, переводящее первую фигуру во вторую.

Так как каждая геометрическая фигура аффинно эквивалентна 
самой себе (она переходит в себя при помощи аффинного пре-
образования id), то отношение аффинной эквивалентности гео-
метрических фигур рефлексивно. Оно также симметрично (если 
Ф аффинно эквивалентна фигуре Ф*, т.е. существует аффинное 
преобразование f, переводящее Ф в Ф*, то Ф* может быть пере-
ведена в Ф при помощи обратного аффинного преобразования f–1) 
и транзитивно (если Ф аффинно эквивалентна Ф*, а Ф* в свою 
очередь аффинно эквивалентна Ф**, т.е. Ф переходит в Ф* при по-
мощи некоторого аффинного преобразования f, а Ф* переходит 
в Ф** при помощи аффинного преобразования g, то композиция 
f o g, которая также является аффинным преобразованием, переве-
дет первую фигуру Ф в третью Ф**). Таким образом, отношение 
аффинной эквивалентности геометрических фигур будет отноше-
нием эквивалентности.  В соответствии с известной теоремой ([1], 
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с. 37–39) отношение эквивалентности разбивает множество всех 
геометрических фигур на плоскости на классы эквивалентности. 
Фигуры одного класса будут аффинно эквивалентны, фигуры раз-
ных классов не будут аффинно эквивалентными.

Замечание. В определенном смысле аффинная эквивалент-
ность – «неотличимость» геометрических фигур по отношению 
к группе аффинных преобразований плоскости. Так же, как равен-
ство геометрических фигур (которое сравнительно недавно пы-
тались заменить невыговариваемым термином «конгруэнтность», 
чтобы не возникало при изложении классической геометрии Евк-
лида противоречий со сравнительно молодой теорией множеств) – 
это их эквивалентность по отношению к группе движений, а по-
добие фигур – эквивалентность по отношению к группе подобий 
плоскости.

Если рассматривать аффинную эквивалентность фигур, то все 
треугольники попадают в один класс «Треугольники», все парал-
лелограммы также будут образовывать свой класс «Параллело-
граммы», то же можно доказать про эллипсы, гиперболы, параболы.

Когда же мы переходим к подобию фигур, т.е. сужаем группу 
преобразований евклидовой плоскости с группы аффинных пре-
образований до группы подобий, класс «Треугольники» в неко-
тором смысле как зеркало расколется на бесконечное множество 
осколков, среди которых будут «Правильные треугольники», «Рав-
нобедренные прямоугольные треугольники» и т.д. – в один класс 
попадают все треугольники, имеющие одинаковую форму, которая 
вполне определяется величинами углов треугольника (см. соответ-
ствующий признак подобия треугольников).

С классом «Параллелограммы» произойдет нечто подобное: 
он разобьется на бесконечно много осколков, среди которых будут 
«Квадраты», «Золотые прямоугольники» и т.д. – в один класс по-
падают все прямоугольники, имеющие одинаковую форму, а также 
«Ромбы с острым углом 30°» и т.д. и т.п.

При переходе к группе движений происходит дальнейшее из-
мельчение классов эквивалентности.

Так, класс «Правильные треугольники» расколется на беско-
нечное множество осколков, каждый из которых будет состоять изо 
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всех правильных треугольников со стороной данной длины. То же 
произойдет с классом «Квадраты», «Ромбы с острым углом 30°» 
и т.д.

Примерами аффинно эквивалентных фигур являются любые 
два треугольника, параллелограмма, эллипса, любые две парабо-
лы, гиперболы. Справедливость этого факта для треугольников 
и параллелограммов легко усматривается из рисунков

Рис. 8.38

Искомым аффинным преобразованием f будет в обоих слу-
чаях аффинное преобразование f = (R, R′), где R = (A, B, C), 
R′ = (A′, B′, C′).

Вопросы: 1) Сколько существует аффинных преобразований, 
переводящих: а) треугольник ABC в  треугольник KLM; b) паралле-
лограмм ABCD в параллелограмм KLMN; c) трапецию ABCD в тра-
пецию KLMN?

2) Что можно сказать об аффинном преобразовании, имеющем 
три инвариантные прямые, изображенные на каждом из следую-
щих рисунков?

Рис. 8.39
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3) Образуют ли группу все аффинные преобразования плоско-
сти, которые данную фигуру Ф переводят в себя?

Чтобы убедиться в аффинной эквивалентности любых двух па-
рабол Ф и Ф*, напомним, что уравнение параболы Ф в некотором 
связанном с ней ортонормированном репере R = O i j может быть 
записано в виде y =  ∙ x2 (см. задачу 8.28). Перейдем к аффинному 
реперу R͂ = O 2  i j. Формулы (8.1) преобразования координат 
при переходе от репера R к новому реперу R͂ x = 2 

 
x͂, y = y͂ дадут 

нам уравнение параболы Ф в новом репере R͂: y͂ = x͂².
К такому же виду может быть приведено уравнение второй 

параболы Ф* в некотором своем аффинном репере R͂*. Искомым 
аффинным преобразованием f, переводящим первую параболу Ф 
во вторую Ф*, будет f = (R͂, R͂*).

Аналогичным образом решается вопрос с любыми двумя эл-
липсами, для каждого из которых можно найти аффинный репер, 
в котором он будет задаваться уравнением x͂2 + y͂2 = 1, а также 
с любыми двумя гиперболами (x͂2 – y͂2 = 1).

Вопросы: 1) Любые ли две трапеции аффинно эквива-
лентны?

2) Любые ли два выпуклых четырехугольника аффинно экви-
валентны?

3) Любые ли два угла аффинно эквивалентны?
Замечание. Угол может быть нулевым, острым, прямым, ту-

пым, развернутым, сверхтупым (величина φ которого заключена 
в промежутке π < φ < 2π – в настоящее время этот термин поче-
му-то не употребляется), полным.

Итак, отношение аффинной эквивалентности разбивает мно-
жество всех геометрических фигур плоскости на классы экви-
валентности. Получается аффинная классификация плоских 
гео метрических фигур, в которой есть, например, такие классы, 
как «Треугольники», «Параллелограммы», «Параболы», «Эллип-
сы» (куда попадают и все окружности), «Гиперболы», однако нет 
таких классов, как «Квадраты», «Ромбы», «Прямоугольники», од-
ного класса «Трапеции», «Выпуклые четырехугольники», «Углы» 
(из-за аффинной неэквивалентности, например, острых и развер-
нутых углов).
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Покажем, как аффинные преобразования помогают просто ре-
шить достаточно сложную задачу (все сложности уходят в теорию 
аффинных преобразований!).

Для доказательства того, что в произвольной трапеции ABCD 
середины оснований, точка пересечения диагоналей и точка пе-
ресечения продолжений боковых сторон всегда лежат на одной 
прямой (коллинеарны), мы рассмотрим вспомогательную рав-
нобедренную трапецию A′B′C′D′ с теми же основаниями, т.е. 
такую, что A′B′ = AB, C′D′ = CD, и произвольной высотой. Эта 
трапеция симметрична относительно прямой, проходящей че-
рез середины основ аний: вершина A симметрична вершине B, 
вершина C – вершине D. Поскольку прямая AD будет симме-
трична прямой BC, то точка пересечения этих прямых будет ле-
жать на оси симметрии. То же самое можно сказать и про пря-
мые AC и BD.

А теперь воспользуемся аффинным преобразованием f, которое 
определяется реперами R = (A′, B′, D′) и R′ = (A, B, D). При этом 
преобразовании f вспомогательная трапеция A′B′C′D′ перейдет 
в трапецию ABCD, а ее ось симметрии перейдет в прямую, на ко-
торой будут лежать середины оснований, точка пересечения диа-
гоналей и точка пересечения продолжений боковых сторон данной 
(произвольной) трапеции ABCD.

Рассмотрим вопрос об а налитическом задании аффинного пре-
образования f, т.е. о формулах, связывающих координаты x, y про-
образа M и координаты x′, y′ образа M′ = f (M) в одном и том же 
репере R. Пользуясь формулами, можно достаточно эффективно 
изучать свойства аффинных преобразований алгебраическими ме-
тодами.

Теорема 8.1. Если аффинное преобразование f задано парой ре-
перов R = O a b и R′ = O′ a′ b′, причем известн ы координаты точки 
O′ в репере R и координаты векторов a′, b′ в базисе a, b, то зависи-
мость между координатами x, y точки M и координатами x′, y′ ее 
образа M′ = f (M) в аффинном репере R выражается формулами

x′ = a1 x + b1 y + c1, 
y′ = a2 x + b2 y + c2, (8.16)

где O′ (c1, c2), a′ (a1, a2), b′ (b1, b2).
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Замечание. Столбцы коэффициентов при x и y в формулах (8.16) 
аффинного преобразования f – координаты базисных векторов a′, b′ 
репера R′, и поэтому они не пропорциональны.

Доказательство. Так как в репере R′ точка M' = f(M) имеет те же 
координаты x, y, что и ее прообраз M в репере R, то 

O'M' = x a′ + y b′ = x (a1 a + a2b) + y (b1 a + b2 b) = 
 = (x a1 + y b1) a + (x a2 + y b2) b.
А так как OM' = OO' + O'M' = O'M' + OO' и OO' = c1 a + c2 b, то 
x′ a + y′ b = (x a1 + y b1 + c1) a + (x a2 + y b2 + c2) b.
Координаты вектора O'M' в базисе a, b определены однозначно, 

поэтому
x′ = a1 x + b1 y + c1, 
y′ = a2 x + b2 y + c2.

Вопрос. Как, пользуясь формулами (8.16), можно находить ин-
вариантные точки аффинного преобразования f, т.е. те точки пло-
скости, которые при этом преобразовании переходят сами в себя 
(остаются на месте)?

Задача 8.31. Аффинное преобразование f задано парой реперов 
R = O a b и R′ = O′ a′ b′ (см. рис.)

Рис. 8.40

Найдите образы точек O, A, B, C (1, 1), D (–1, 0), E (–1, –4), O′, 
A′, B′, а также прообразы точек O′, A′, B′, C′ = f (C), D′ = f (D), O, A, 
B, E.

Задача 8.32. Аффинное преобразование f задано формулами
x′ = – x + y + 2,
y′ =  x + y + 1. (8.17)

Найдите, пользуясь этими формулами, образы и прообразы тех 
же точек, для которых требовалось построить образы и прообразы 
в предыдущей задаче.
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Задача 8.33. Найти инвариантные точки аффинного преобразо-
вания f из предыдущей задачи.

Решение. Для того, чтобы найти координаты x, y инвариантных 
точек аффинного преобразования, которое задано формулами 
(8.17), достаточно решить систему x′ = x, y′ = y (в формулах (8.17) 
просто удаляются штрихи у x′ и y′!). В нашем случае мы получим 
систему

x = – x + y + 2,
y =  x + y + 1,

единственным решением которой является точка (– 1, – 4).
Задача 8.34. Запишите формулы аффинного преобразования, 

обратного преобразованию задачи 8.32.
Вопросы: 1) Как можно найти образ и прообраз прямой d: 2x –

– 3y + 5 = 0 при аффинном преобразовании f из задачи 8.32?
2) То же – для фигуры Ф, заданный в аффинном репере R урав-

нением y² = 1, и для фигуры Ф* с уравнением x² + y² = 1. Верно 
ли, что фигура Ф – это пара параллельных прямых, а Ф* – окруж-
ность?

3) Дано уравнение прямой m: 3x – 4y + 2 = 0 и формулы (8.17) 
аффинного преобразования f. Попробуйте понять, что мы нахо-
дим, когда выполняем следующие операции:
a) 3x′ – 4y′ + 2 = 0;
b) 3 (– x + y + 2) – 4 (x + y + 1) + 2 = 0;
c) 7x + y – 4 = 0?
Что мы получим, если в уравнение прямой m вместо x и y под-

ставим их выражения через x′, y′, найденые из формул аффинного 
преобразования f, т.е.

x = –  x′ +  y′ + , 

y =   x′ +  y′ – ?

Задача 8.35. Даны формулы аффинных преобразований f и g
 f:  x′ = – x + y + 2,   g:  x′ = x   + 3, 
   y′ =  x + y + 1;     y′ =   y + 5.
Требуется записать формулы композиции f o g и композиции 

g o f. Совпадают ли эти аффинные преобразования? Коммутативна 
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ли операция композиции на множестве всех аффинных преобразо-
ваний плоскости? Будет ли группа всех аффинных преобразований 
плоскости коммутативной (абелевой) группой?

Замечание. В вопросе 3 мы записали зависимость между ко-
ординатами x′, y′ образов M′ и, используя формулы (8.17) аффин-
ного преобразования f из задачи 8.32, нашли зависимость между 
координатами x, y их прообразов M. Таким образом, уравнение 
7x + y – 4 = 0 – это уравнение прообраза прямой m.  Соответс твенно 
во втором случае, когда используются формулы обратного аффин-
ного преобразования f–1, мы получим уравнение образа прямой m. 
Образом прямой m:  3x – 4y +  2 = 0 будет прямая m′: 7x + y – 19 = 0.

Определение 8.8. Гомотетией плоскости с центром О и коэф-
фициентом m, где m – отличное от нуля и единицы действительное 
число, называется аффинное преобразование Hm(O), которое зада-
ется реперами R = O a b и R' = O ma mb:

Рис. 8.41

Можно понять, что: 1) при m = –1 гомотетия H–1 (O) – это цент-
ральная симметрия Z O;

2) гомотетия H–m (O) с отрицательным коэффициентом (–m) – 
это композиция гомотетии Hm(O) с положительным коэффициен-
том m и центральной симметрии Z O (заметим, что в данном случае 
Hm(O) o Z O = Z O o Hm(O));

3) если бы мы не исключили случай m = 1, то это было бы id – 
тождественное преобразование плоскости;

4) композицией двух гомотетий с общим центром и коэффи-
циентами m и n будет гомотетия с тем же центром, коэффициент 
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которой  равен произведению коэффициентов m и n (если считать 
id гомотетией с коэффициентом 1).

Задача 8.36. Докажите, что все гомотетии плоскости с фикси-
рованным центром вместе с тождественным преобразованием пло-
скости id образуют группу преобразований. Будет ли она абелевой?

Гомотетия, будучи частным случаем аффинного преобразова-
ния, обладает, естественно, всеми свойствами аффинных преобра-
зований. К ним добавляется еще ряд свойств:
a) Любая прямая d, не проходящая через центр гомотетии, пере-

ходит в параллельную ей прямую d′.
b) Любая прямая d, проходящая через центр гомотетии, инвари-

антна, т.е. переходит сама в себя.
Отсюда следует, что при гомотетии любое направление на пло-

скости (в широком смысле, т.е. множество всех параллельных 
прямых) инвариантно.

Замечание. Направлением на плоскости в узком смысле назы-
вается множество всех сонаправленных (т.е. одинаково направлен-
ных) лучей:

Рис. 8.42

В этом смысле говорят о направлении луча, осей общей декар-
товой (аффинной) системы координат, направленного отрезка, век-
тора.
c) Если A′, B′ – образы точек A, B при гомотетии с коэффициен-

том m, то всегда  A'B' = m ∙ AB.
Справедливость утверждений a) и b) вытекает из того, что урав-

нение прямой d в репере R = O a b и ее образа d′ в репере R' = O ma 
mb совпадают. Для доказательства свойства c) воспользуемся тем, 
что если A (a1, a2), B (b1, b2) в репере R = O a b, то их образами будут 
точки A′, B′, имеющие те же координаты, но в репере R' = O ma mb.
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Тогда AB = (b1 – a1) a + (b2 – a2) b, A'B' = (b1 – a1) ma + (b2 – a2) mb,
откуда и заключаем, что A'B' = m ∙ AB.

В качестве следствия из свойства c) отметим следующее: 
при гомотетии с коэффициентом m все расстояния изменяются 
в |m| раз. Что можно сказать об инвариантности при гомотетии на-
правлений в узком смысле?

Вопросы. Образуют ли группу: 1) id и гомотетия с коэффици-
ентом m = – 1;

2) все гомотетии Hm(O) с фиксированным центром О, коэффи-
циент m которых: a) любое натуральное число; b) любое целое чис-
ло, отличное от нуля; c) целая степень числа 2 (m = 2 ⁿ, где n  Z); 
d) натуральная степень числа 2 (m = 2 ⁿ, где n  N); e) целая степень 
числа 10 (m = 10 ⁿ, где n  Z); f) целая степень числа π (m = πⁿ, где 
n  Z); g) любое рациональное число, отличное от нуля; h) любое 
иррациональное число? Здесь мы считаем, что гомотетия может 
быть и с коэффициентом m = 1.

Покажем, как известная уже нам задача о трапеции может быть 
красиво решена с использованием двух гомотетий. Пусть ABCD – 
произвольная трапеция, M и N – середины оснований AB и CD, 
E – точка пересечения диагоналей AC и BD, O – точка пересечения 
продолжений боковых сторон AD и BC:

Рис. 8.43

При гомотетии с центром О и коэффициентом m = AB / DC, ко-
торая точку D переводит точку A, а точку C – в точку B, верхнее 
основание DC перейдет в нижнее AB, а его серединa – точка N 
перейдет в середину нижнего основания – точку M. Поэтому точки 
O, N и M лежат на одной прямой.
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При гомотетии с центром E и коэффициентом (–m) точка D пе-
реходит в точку B, точка C – в точку A; основание CD – в основание 
AB; середина N верхнего основания – в середину M нижнего осно-
вания. Поэтому точки E, N и M также лежат на одной прямой – той 
же самой (!) прямой MN.

Вопрос. Возможно, кто-то заметил, что в решении задачи верх-
нее основание трапеции сначала названо DC, а затем – CD? Ого-
ворка? Или же в этом есть какой-то смысл?

Замечание. Почему эта задача о трапеции решается нами уже 
не в первый раз? Она памятна автору настоящей главы учебного по-
собия вот по какой причине. В далеком 1966 году один из авторов 
широко известного в СССР пособия по математике для поступающих 
в вузы (в те старые добрые времена еще не было ЕГЭ (!) и абиту-
риенты демонстрировали свою математическую подготовку, сдавая 
вступительный экзамен по математике в выбранном ими вузе – в рам-
ках школьной программы, но с разным уровнем требований к глуби-
не демонстрируемых знаний; имеется в виду книга Г.В. Дорофеева, 
М.К. Потапова, Н.Х. Розова «Математика для поступающих в вузы») 
предложил эту задачу мне – тогда ученику 8 класса – на устном эк-
замене в г. Ставрополе при поступлении в ФМШ 18 при МГУ, где 
лекции ученикам этой школы (не обучающимся, а именно ученикам, 
школьникам, интернатовцам!) в течение двух лет читал величайший 
математик ХХ века академик Андрей Николаевич Колмогоров, кото-
рому мне однажды даже посчастливилось сдавать и сдать сложный 
дифференцированный зачет по геометрии. Но вот уже более полуве-
ка не могу вспомнить, как же я доказал на вступительном зкзамене 
в ФМШ коллинеарность этих самых четырех точек.

Перейдем к вопросу о формулах гомотетии. Формулы гомоте-
тии с центром в точке О и коэффициентом m в аффинном репере 
R = O a b можно легко получить, воспользовавшись формулами 
(8.16) аффинного преобразования. Так как эта гомотетия может 
быть задана реперами R = O a b и R' = O ma mb, то O′ (0, 0) в репе-
ре R, a′ (m, 0), b′ (0, m) в базисе a, b, поэтому формулы гомотетии 
Hm(O) в репере R = O a b имеют следующий вид:

x′ = m x, 
y′ =   my.
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Какой вид имеют формулы гомотетии с центром в точке C (c1, 
c2) и коэффициентом m? Если в репере R точка M имеет координа-
ты x, y, а ее образ M′ = Hm(C) (M) – координаты x′, y′, то поскольку 
при гомотетии всегда C'M' = m ∙ CM, а C′ = C, то в нашем случае 
C'M' = m ∙ CM. Так как C'M' (x′ – c1, y′ – c2), CM (x – c1, y – c2), m ∙ 
∙ CM (m (x – c1), m (y – c2)), то 

x′ – c1 = m (x – c1), 
y′ – c2 = m (y – c2);

или
x′ = m (x – c1) + c1, 

 y′ = m (y – c2) + c2. (8.18)
Замечание. При m = – 1 гомотетия H –1 (C) – это центральная 

симметрия ZC. Формулы центральной симметрии ZC с центром 
в точке C (c1, c2), таким образом, имеют вид

x′ = – x   + 2c1, 
y′ =   – y + 2c2. (8.19)

Если же центр C совпадает с началом координат, т.е. 
C = O (0, 0), то

x′ = – x, 
y′ =   – y.

При аффинных преобразованиях евклидовой плоскости равные 
отрезки вовсе не обязаны переходить в равные (см. рис. 8.44):

Рис. 8.44

Но если отрезки равной длины располагаются на параллель-
ных прямых или на одной прямой, то при любом аффинном пре-
образовании f их образы также будут отрезками равной длины, 
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расположенными  на параллельных прямых или на одной пря-
мой (см. свойства аффинных преобразований). Можно доказать, 
что при любом аффинном преобразовании f направление в узком 
смысле (множество всех одинаково направленных или сонаправ-
ленных лучей) переходит в направление в узком смысле:

Рис. 8.45

Поэтому при любом аффинном преобразовании f образом век-
тора v, рассматриваемого как множество всех сонаправленных от-
резков одинаковой длины (плюс нулевой или нуль-вектор 0 и со-
ответствующие операции над векторами!), будет вектор v′, т.е. 
с любым аффинным преобразованием f точек плоскости связано 
вполне определенное преобразование fv векторов этой плоскости.

Теорема 8.2. Если аффинное преобразование f задано фор-
мулами

x′ = a1 x + b1 y + с1, 
y′ = a2 x + b2 y + c2, 

то зависимость между координатами v1, v2 вектора v и коорди-
натами v1′, v2′ его образа v′ при связанном с f преобразовании век-
торов f v выражается формулами

v1′ = a1 v1 + b1 v2, 
 v2′ = a2 v1 + b2 v2. (8.20)

Доказательство. Отложим вектор v (v1, v2) от начала координат: 
OM = v. При аффинном преобразовании f образом точки О будет 
точка O′ (c1, c2), образом точки М (v1, v2) будет точка М′ (a1 v1 +
+ b1 v2 + c1, a2 v1 + b2 v2 + c2). Поэтому образом вектора v = OM будет 
вектор v′ = O'M' (a1 v1 + b1 v2, a2 v1 + b2 v2).
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Замечание. Пользуясь формулами (8.20), можно находить 
ненулевые векторы v, которые переходят в коллинеарные им не-
нулевые векторы v′ = m v (здесь число m ≠ 0). Такие векторы 
задают инвариантные направления аффинного преобразования f 
(здесь под направлениeм понимается направление в широком 
смысле, т.е. множество всех параллельных между собой прямых 
плоскости). Именно среди прямых инвариантных направлений 
следует искать инвариантные прямые аффинного преобразова-
ния f (объясните почему).

Задача 8.37. Найти инвариантные направления аффинных пре-
образований f, заданных следующими формулами:
a)  x′ =  x   + 3,   b)   x′ =  – y,     c)   x′ =  x + y ,  
  y′ =    y + 18;      y′ = x;          y′ =    y ;    
d)  x′ = – x   + 18,    e)  x′ = – x + y + 8,  f)  x′ = – x   + 26, 
  y′ =    y + 9;      y′ =  x + y + 18;     y′ =   – y + 26.
Решение. Для каждого случая запишем формулы (8.20), по ко-

торым преобразуется координаты векторов v (v1, v2):
a)  v1′ = v1,      b)  v1′ =   – v2,   c)  v1′ =  v1 + v2,  
  v2′ =    v2;     v2′ =  v1;       v2′ =    v2;  
d)  v1′ = – v1,     e)  v1′ = – v1 + v2,   f)  v1′ = – v1, 
  v2′ =    v2;     v2′ =  v1 + v2;     v2′ =   – v2.
Пользуемся последним замечанием и ищем ненулевые векторы 

v (v1, v2), которые переходят в ненулевые векторы v′ = m v(m v1,
m v2) такие, что 

v1′ = m v1, 
v2′ =      m v2, 

где m – некоторое ненулевое число.
В случае а) получим v1 = m v1, v2 = m v2. При m = 1 любой нену-

левой вектор v (v1, v2) переходит сам в себя.
В случае b) из – v2 = m v1, v1 = m v2 или m (v1 + v2) = 0, m (v1 – v2) = 0 

следует, что таких векторов не существует.
Для с) из v1 + v2 = m v1, v2 = m v2 или (m – 1) v1 + v2 = 0, 

(m – 1) v2 = 0 следует, что при m = 1 любой ненулевой вектор 
v (v1, 0) переходит сам в себя.

В задаче d) система – v1 = m v1, v2 = m v2 равносильна системе 
(m + 1) v1 = 0, (m – 1) v2 = 0. Ненулевые векторы v (0, v2) переходят 
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сами в себя, а векторы v (v1, 0) «опрокидываются», т.е. переходят 
в противоположные им векторы – v (– v1, 0).

Для аффинного преобразования, заданного формулами e), из си-
стемы – v1 + v2 = m v1, v1 + v2 = m v2 или равносильной ей системы 
(m + 1) v1 – v2 = 0, v1 – (m – 1) v2 = 0 можно сделать вывод о том, 
что ненулевых векторов v, переходящих в ненулевые m v, у данно-
го аффинного преобразования нет.
f) Убедитесь самостоятельно, что в этом случае любой ненуле-

вой вектор v будет «опрокидываться», т.е. переходить в проти-
воположный ему вектор – v. Если переписать формулы данно-
го аффинного преобразования в виде

 (x′ + x) = 13,  (y′ + y) = 13, 
 то можно понять, что это – формулы центральной симметрии 

с центром в точке F (13, 13).
Задача 8.38. Найти инвариантные прямые аффинных преобра-

зований a) – f) из предыдущей задачи.
Решение. Напомним, что инвариантной фигурой аффинного 

преобразования f называется такое множество точек плоскости, 
которое при этом преобразовании f переходит самo в себя. Выше 
уже говорилось о том, что инвариантные прямые аффинных пре-
образований следует искать только среди прямых инвариантных 
направлений. Это вытекает из того факта, что при аффинном 
преобразовании f направление (в широком смысле) переходит 
в направление. По этой причине сразу можно сказать, что у аф-
финных преобразований, заданных формулами b) и e), нет инва-
риантных прямых.

Для аффинного преобразования а) ищем уравнение инвариант-
ной прямой d в виде A x + B y + C = 0. Прямая d: A x + B y + C = 0 
будет инвариантной при аффинном преобразовании f iff ее про-
образ, т.е. прямая A (x + 3) + B (y + 18) + C = 0 совпадает с пря-
мой d (объясните, почему при нахождении инвариантных пря-
мых можно искать прообраз, а не образ прямой d) iff уравнения
A x + B y + C = 0 и A x + B y + 3 A + 18 B + C = 0 равносильны, 
т.е. определяют одну и ту же прямую d iff 3 A + 18 B + C = C iff 
A + 6 B = 0 iff направляющий вектор m (– B, A) прямой d паралле-
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лен вектору с координатами (1, 6). Таким образом любая прямая d 
с уравнением 6x – y + C = 0, где C – любое действительное число 
будет инвариантной прямой аффинного преобразования а).

Замечание. Так как при аффинном преобразовании а) для лю-
бой точки M (x, y) и ее образа M′ (x′, y′) вектор MM' (3, 18) один 
и тот же, то формулы а) являются формулами параллельного пере-
носа на вектор a (3, 18). При параллельном переносе все прямые, 
имеющие направление вектора переноса, являются инвариантны-
ми прямыми.

Аффинное преобразование c) имеет одно инвариантное направ-
ление – направление координатной оси Ox. Поэтому инвариантные 
прямые будем искать среди прямых y = C, где C – действительное 
число. Прямая d: y = C инвариантна при аффинном преобразова-
нии c) iff ее прообраз y′ = C, т.е. прямая y = C, совпадает с ней. 
Видим, что инвариантными будут все прямые y = C инвариантного 
направления.

Для d) инвариантные прямые ищем среди прямых y = C и x = D. 
Прямая d: y = C будет инвариантной прямой аффинного преобра-
зования d) iff ее прообраз y′ = C, т.е. прямая y + 9 = C, совпадает 
с ней. Среди прямых этого инвариантного направления инвариант-
ных прямых нет.

Прямая d: x = D инвариантна iff ее прообраз x′ = D, т.е. прямая – 
x + 18 = D, совпадает с ней. Видим, что и среди прямых направле-
ния оси Oy тоже нет ни одной инвариантной прямой.

В случае f), как и в случае а), уравнения инвариантных прямых 
ищем в общем виде A x + B y + C = 0, т.е. инвариантные прямые 
ищем среди прямых всех направлений.

Прямая d: A x + B y + C = 0 будет инвариантный прямой аффин-
ного преобразования f) iff ее прообраз A x′ + B y′ + C = 0, т.е. прямая 
A (– x + 26) + B (– y + 26) + C = 0, совпадает с ней iff уравнения 
A x + B y + C = 0 и A x + B y – (26 A + 26 B + C) = 0 равносильны 
iff C = – (26 A + 26 B + C) iff C = 13 A + 13 B. Таким образом, инва-
риантными прямыми аффинного преобразования f) будут все пря-
мые d, уравнения которых могут быть записаны в виде: A (x – 13) +
+ B (y – 13) = 0, где A² + B² > 0, т.е. все прямые, проходящие че-
рез точку F (13, 13) – центр центральной симметрии Z F.



250

Математика и информатика. Часть 2

8.7.2. Перспективно-аффинные преобразования плоскости
Частным случаем аффинных являются так называемые пер-

спективно-аффинные преобразования, в самом названии которых 
подчеркивается важная область их практического применения – 
изображение фигур на плоскости.

Определение 8.9. Перспективно-аффинным преобразованием 
или родством называется такое аффинное преобразование плоско-
сти, множеством инвариантных точек которого является прямая p 
(от франц. perspective) – ось родства.

Перспективно-аффинные преобразования, естественно, обла-
дают всеми свойствами аффинных (см. раздел 1 параграфа 7). 
При этом каждое из них имеет хотя бы одно инвариантно е направ-
ление (какое?).

Вопрос. Образуют ли группу: 1) все пе рспективно-аффинные 
преобразования плоскости; 2) все перспективно-аффинные пре-
образования плоскости с фиксированной осью р; 3) тождественное 
преобразование плоскости id вместе с преобразованиями 2)?

Если задавать родство при помощи пары аффинных реперов 
R = (O, A, B) и R' = (O′, A′, B′), точки О и A удобно помещать на оси 
родства. Тогда третья точка репера B уже не будет инвариантной 
(почему?), т.е. B′ ≠ B. Возможны следующие два случая.

Если прямая BB′ || оси р, то такое родство называют сдвигом 
плоскости с осью р; в случае

BB′  р – косым растяжением плоскости с осью р:

Рис. 8.46

Попробуйте объяснить способ построения образа M′ точки M 
(M  р) при сдвиге и при косом растяжении плоскости:
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Рис. 8.47

На обоих рисунках (B′C, M′) = (BC, M), поэтому MM′ || BB′. 
Отсюда следует, что направление прямой BB′ целиком состоит 
из инвариантных прямых (оно называется направлением родства 
и в первом случае совпадает с направлением оси сдвига):

Рис. 8.48

Вопрос. Как строится образ точки М, которая находится на пря-
мой BB′? В частности, как построить образ точки B′?

Для любой точки М, не лежащей на оси косого растяжения р, 
(MM′, M) = (BB′, B) = λ:

Рис. 8.49
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Константу  называют коэффициентом косого растяже-
ния. Из  = следует, что  = .

Косое растяжение с коэффициентом μ = –1 называется косой 
симметрией (почему?):

Рис. 8.50

Если направление косого растяжения f перпендикулярно оси 
растяжения (BB′  р), то f называется растяжением плоскости 
от прямой р. Если же при этом коэффициент растяжения μ = –1, 
получаем Sp – осевую симметрию с осью р.

Вопрос. Может ли коэффициент μ косого растяжения плоско-
сти быть равен 0 или 1? Почему?

Задача 8.39. Какое перспективно-аффинное преобразование 
f с осью р задано на каждом из рисунков точкой B и ее образом 
B′ = f (B)?

Рис. 8.51
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Мы укажем лишь значения коэффициентов μ: ½, –1, –2, нет, 
2, –1, –½, –1.

Задача 8.40. Перспективно-аффинное преобразование f задано 
осью р и парой соответствующих точек B и B′ = f (B), где B ≠ B′. По-
строить образ и прообраз: 1) прямой d, которая пересекает ось р; 
2) прямой m, которая параллельна оси р; 3) квадрата KLMN, одна 
из сторон которого параллельна оси р; 4) квадрата PQRS, ни одна 
из сторон которого не параллельна оси родства. Рассмот реть 
как случай сдвига плоскости (BB′ ǁ p), так и случай косого растя-
жения плоскости (BB′  p).

Задача 8.41. Записать формулы косого растяжения плоскости 
с коэффициентом μ (μ – действительное число, отличное от 0 и 1) 
в удобном аффинном репере и, пользуясь этими формулами, най-
ти инвариантные точки, направления и прямые данного вида пер-
спективно-аффинных преобразований.

Решение. Косое растяжение плоскости f с осью р может быть за-
дано при помо щи аффинных реперов R = (O, A, B) и R' = (O, A, B′), 
где точки O, A расположены на оси р и поэтому инвариантны, а точ-
ки B и B′ задают так называемое направление косого растяжения f.

Для решения задачи воспользуемся еще более удобным репе-
ром R = (O, A, B), выбрав в качестве первой его точки О точку пе-
ресечения оси р и прямой BB′, а в качестве второй точки A возьмем 
любую другую точку оси родства:

Рис. 8.52

Для аффинного преоб разования f, которое задано такими ре пе-
рами R = (O, A, B) и R' = (O, A, B′): O′ = O (0, 0) в репере R = O a b;
a′ = a (1, 0), b′ = μ b (0, μ) в базисе a, b; а μ – коэффициент 
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косого растяжения, так как это число было взято из равенства 
b′ = μ b или OB' = μ OB. Подставляя координаты начала и базисных 
векторов репера R' в формулы (8.16) аффинных преобразований, по-
лучим формулы

 x′ = x, 
 y′ =   μ y (8.21)

косого растяжения f с коэффициентом μ в специально подо-
бранном аффинном репере R.

Инвариантные точки f находим, решая систему x′ = x, y′ = y 
или x = x, y = μ y. Из (μ  – 1) y = 0 с учетом того, что μ ≠ 1, получим 
прямую y = 0 инвариантных точек – ось родства f. Другого резуль-
тата мы и не ожидали.

Переходим к нахождению инвариантных направлений. Для это-
го используем формулы (8.20) связанного  с косым растяжением f 
преобразования векторов fv:

v1′ = v1, 
v2′ =   μ v2.

Ищем ненулевые векторы v (v1, v2), которые при этом преобра-
зовании переходят в ненулевые векторы m v (m v1, m  v2). Приходим 
к системе

m v1 = v1, 
m v2 =   μ v2

или (m – 1) v1 = 0, (m – μ) v2 = 0. Если m = 1, то из системы 0 = 0, 
(1 – μ) v2 = 0 видим, что вектор a(1, 0) при fv переходит сам в себ я 
(m = 1).

Вопрос. А в какие векторы переходят векторы, коллинеарные 
вектору a, т.е. того же в широком смысле (!) направления?

Если же m ≠ 1, то из системы (m – 1) v1 = 0, (m – μ) v2 = 0 най-
дем при m = μ вектор b (0, 1)  при fv будет переходить в μ b (так же, 
как и все ему коллинеарные векторы!).

Таким образом, косое растяжение f имеет ровно два инвариант-
ных направления: направление оси р и отличное от него направле-
ние косого растяжения. В общем-то это было понятно из геометри-
ческих соображений, мы лишь убедились, что помимо известных 
нам двух инвариантных направлен ий других инвариантных на-
правлений у косого растяжения нет.
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Инвариантные прямые перспективно-аффинного преобразова-
ния f, как мы это делали ранее и как всегда будем делать в даль-
нейшем для других частных видов аффинных преобразований 
евклидовой плоскости, ищем только среди прямых инвариантных 
направлений.

Прямая x = с инвариантна при косом растяжении (8.21) iff ее 
прообраз x′ = c, т.е. прямая x = c совпадает с н ей. Таким образом, 
любая прямая с уравнением x = c, т.е. имеющая направление косо-
го растяжения, будет инвари антна.

Прямая у = с инвариантна при (8.21) iff ее прообраз у′ = с, т.е. 
прямая μ y = c совпадает с ней iff с / μ = с (у нас μ ≠ 0!) iff c = 0. 
Видим, что среди прямых этого инвариантного направления лишь 
одна прямая будет инвариантной – ось р косого растяжения, кото-
рая, будуч и осью   родства, является прямой инвариантных точек.

Задача 8.42. Сделать то же, что в  задаче 8.41, но для сдвига пло-
скости.
Указание. В аффинном репере R = (O, A, B), где O и A лежат 

на оси сдвига р:
O′ = O (0, 0), A′ = A (1, 0), B′ (β, 1), где β – некоторое действи-

тельное число, отличное от нуля.
Вопрос. Для косого растяжения число μ в определенном смы-

сле характеризовало степень косого растяжения плоскости относи-
тельно оси растяжения р и было одинаковым для всех точек М вне 
оси р. Каков геометрический смысл числа β?

Задача 8.43. Построить образ окружности при сжатии пло-
скости с коэффициентом 2 (растяжении с коэффициентом μ = ½) к прямой р, проходящей через ее центр. Записать уравнение обра-
за окружности в удобном ортонормированном репере. Что это 
за кривая?

Рассмотрим несколько задач, связанных с изображениями фи-
гур в параллельной проекции. При параллельном проектировании 
плоскости на плоскость прямые проектируются в прямые, парал-
лельные – в параллельные, сохраняется отношение трех точек (AB, 
M) и отношение параллельных отрезков. Можно доказать (по-
пробуйте сделать это самостоятельно!), что параллельной проек-
цией (тенью) данного треугольника ABC может служить любой 
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(с точностью до подобия) треугольник A′ B′ C′ плоскости изобра-
жений.

Задача 8.44. Дано изображение квадрата KLMN и прямой d, 
лежащей в плоскости квадрата. Требуется построить изображе-
ние перпендикуляра, проведенного из центра квадрата KLMN 
к прямой d.

Решение. Изображением квадрата KLMN и прямой d будут 
(в параллельной проекции!) параллелограмм K′L′M′N′ и прямая d′. 
Изображением центра квадрата О будет, естественно, центр О′ па-
раллелограмма. На стороне M′N′ параллелограмма строим квад рат 
N′M′LK и будем считать его оригинальным квадратом KLMN. Рас-
смотрим родство f с осью р = M′N′, при котором квадрат KLMN 
переходит в свое изображение – параллелограмм K′L′M′N′. Оно мо-
жет быть задано точкой L и ее образом L′ (см. рис.):

Рис. 8.53

Восстановим на оригинале прямую d. Для этого на нашем ри-
сунке (возможны и другие варианты, но они не могут вызвать 
каких-либо серьезных затруднений) строим образ d прямой d′ 
при обратном родстве f–1 или, что то же самое, прообраз прямой d′ 
при родстве f. Можно взять на прямой d′ точки D′ и Q′, для которых 
легко находятся прообразы D и Q: D′ = d′  p, Q′ = d′  K'L'. Прямая 
d = DQ. Мы восстановили оригинал (квадрат KLMN и прямую d) 
по его изображению в парал лельной проекции (параллелограмму 
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K′L′M′N′ и прямой d′). Сам описанный метод поэтому называется 
методом перехода к оригиналу. Он позволяет решать подобные за-
дачи при помощи перспективно-аффинных преобразований.

В нашей задаче осталось на оригинальном чертеже провести 
перпендикуляр ОН из центра квадрата к прямой d, а затем вернуть-
ся в плоскость изображений, т.е. построить образ этого перпенди-
куляра ОН при родстве f.

Вопрос. Как можно задавать обратное родство f–1?
Задача 8.45. Дано изображение квадрата KLMN и угла, лежа-

щих в одной плоскости. Восстановить оригинальный угол.
Задача 8.46. P′Q′R′ – изображение прямоугольного равнобед-

ренного треугольника PQR с гипотенузой QR. Как изобразятся 
правильные треугольники, построенные в плоскости PQR на сто-
ронах треугольника PQR вне его?

З адача 8.47. На сторонах египетско го треугольника ABC с ги-
потенузой AB и меньшим углом A вне его построены квадраты. 
Построить их изображения, если сам египетский треугольник изо-
бражен в виде правильного треугольника A′B′C′. Чему равны отно-
шения площадей построенных изображений?

8.7.3. Преобразования подобия плоскости
Определение 8.10. Пусть на евклидовой плоскости задан ор-

тонормированный репер R = O i j и ортогональный репер R' = 
= O a′, b′, векторы которого a′ b′ не только ортогональны (перпен-
дикулярны), но и равны по длине: | a′| = | b′| = k. Аффинное пре-
образование f = (R, R'), которое определяется такой парой реперов 
R, R', называется преобразованием подобия или подобием плоско-
сти с коэффициентом k:

Рис. 8.54
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Если M и N – произвольные точки, M′ = f (M), N′ = f (N) – их 
образы, и M (m1, m2), N (n1, n2) в ортонормированном репере R = 
= O i j, то M′ (m1, m2), N′ (n1, n2) в ортогональном репере R′ с базис-
ными векторами a′, b′ длины k. Тогда MN (n1 – m1, n2 – m2) в орто-
нормированном базисе i, j; а M'N' (n1 – m1, n2 – m2) в ортогональном 
базисе a′, b′ с векторами длины k. Из MN² = MN² (так как MN² =
= | MN | ∙ | MN | ∙ cos 0° = MN²) = [ (n1 – m1) i + (n2 – m2) j]² = 
= (n1 – m1)² i

2 + 2 (n1 – m1) (n2 – m2) i ∙ j + (n2 – m2)² j
2 = (n1 – m1)² + (n2 –

– m2)², M′N′² = M'N' ² = [ (n1 – m1) a′ + (n2 – m2) b′ ]² = (n1 – m1)² a′² +
+ 2 (n1 – m1) (n2 – m2) a′∙ b′ + (n2 – m2)² b′² = (n1 – m1)² k² + (n2 – m2)² k² = 
= MN² ∙ k²

заключаем, что при преобразовании подобия плоскости с коэф-
фициентом k все расстояния изменяются в k раз. Отсюда, в част-
ности, следует, что при преобразованиях подобия сохраняются ве-
личины углов.

Замечание. Можно доказать, что если преобразование пло-
скости все расстояния изменяет в k раз, то это преобразование 
является преобразованием подобия. Это свойство, таким обра-
зом, является характеристическим свойством подобий и обыч-
но используется в качестве определения преобразования подо-
бия плоскости.

А так как преобразования подобия – частный случай аффин-
ных преобразований, то они обладают также всеми свойствами 
аффинных преобразований (см. раздел 1 параграфа 7). В частно-
сти, преобразование подобия можно задавать любой парой со-
ответствующих реперов R͂ = (O͂, A͂, B͂) и R͂' = (O͂′, A͂′, B͂′). Можно 
понять, что при этом треугольники O͂A͂B͂ и O͂'A͂′B͂′ подобны с коэф-
фициентом k.

Тождественное преобразование плоскости id – подобие (с ко-
эффициентом 1). Преобразование f–1, обратное преобразованию 
подобия f, будет преобразованием подобия (c коэффициентом k–1), 
композиция любых двух преобразований подобия f и g с коэффи-
циентами k и l также будет преобразованием подобия (с коэффици-
ентом k ∙ l). Таким образом, множество всех преобразований подо-
бия евклидовой плоскости образуют группу – подгруппу группы 
всех аффинных преобразований плоскости.
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Определение 8.11. Две геометрические фигуры Ф и Ф* называ-
ются подобными (Ф  Ф*), если существует преобразование подо-
бия f, переводящее первую фигуру во вторую.

Так как каждая геометрическая фигура Ф подобна самой себе 
(Ф переходит в Ф при подобии id), то отношение подобия реф-
лексивно. Если фигура Ф подобна фигуре Ф*, т.е. переходит в Ф* 
при подобии f (с коэффициентом k), то Ф* может быть переведена 
в Ф при помощи обратного преобразования f–1, которое также яв-
ляется подобием, но с коэффициентом k–1. Таким образом, отно-
шение подобия симметрично. Если Ф  Ф*, а Ф*  Ф**, т.е. Ф 
переходит в Ф* при подобии f с коэффициентом k, а Ф* переходит 
в Ф** при подобии g с коэффициентом l, то фигура Ф перейдет 
в фигуру Ф** при композиции f o g, которая также является подо-
бием (с коэффициентом k ∙ l). Поэтому Ф  Ф**, т.е. отношение 
подобия геометрических фигур транзитивно, а значит, будет отно-
шением эквивалентности.

Множество всех геометрических фигур плоскости разбивается 
на классы эквивалентности, каждый из которых состоит изо всех 
подобных между собой фигур и называется формой геометриче-
ской фигуры.

Вопрос. Верно ли, что параллельной проекцией данного тре-
угольника ABC может быть треугольник A′ B′ C′ произвольной 
формы (см. раздел 2 параграфа 7)?

Примерами подобных фигур могут служить любые два отрезка, 
луча, прямых угла, угла в 33°; любые два прямоугольника, имею-
щие форму «золотого сечения» или «Божественной пропорции»; 
любые два прямоугольника с заданным отношением сторон (кото-
рое и определяет форму прямоугольника!) и, в частности, любые 
два квадрата; любые две окружности и т.д.

Поэтому можно говорить о форме отрезка (все отрезки плоско-
сти составляют один класс эквивалентности «Отрезки»), прямой, 
луча, правильного треугольника или прямоугольного треугольни-
ка с острым углом 30°, квадрата, прямого угла, окружности, «зо-
лотого» прямоугольника, прямоугольника с отношением сторон 
2 : 1 (названия соответствующим классам эквивалентности дайте 
сами!), но нельзя говорить: форма прямоугольника, форма эллипса , 
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форма трапеции, форма прямоугольного треугольника, форма 
остро- или тупоугольного треугольника (объясните почему). Инте-
ресно, что из трех конических сечений (эллипс, гипербола, парабо-
ла) парабола находится в привилегированном положении: любые 
две параболы подобны, чего нельзя сказать о любых двух эллипсах 
или любых двух гиперболах. То, что любые две параболы подоб-
ны, будет доказано ниже.

Вопросы: 1) Сколько существует преобразований подобия 
плоскости, переводящих: a) отрезок AB в отрезок CD; b) правиль-
ный треугольник ABC в правильный треугольник KLM; c) квадрат 
ABCD – в квадрат KLMN; d) «золотой» прямоугольник ABCD – 
в «золотой» прямоугольник KLMN; e) прямой угол – в прямой 
угол; f) окружность – в окружность; g) окружность с отмеченной 
на ней точкой M – в окружность с отмеченной на ней точкой M′, 
где M′ – образ точки M; h) прямую – в прямую; i) прямоугольный 
треугольник с острым углом 30° – в прямоугольный треугольник 
с острым углом 60°?

2) Образуют ли группу все подобия плоскости, коэффициента-
ми которых являются все: a) числа из множества A = {..., ¼, ⅓, ½, 1, 
2, 3, 4, ...}; b) положительные рациональные числа; c) положитель-
ные иррациональные числа; d) все степени числа 2 с натуральным 
показателем; е) все степени числа 5 с целым показателем?

3) Образуют ли группу все подобия плоскости с коэффициентом 1?
Задача 8.48. Доказать, что любые две параболы подобны.
Доказательство. Воспользуемся определением параболы Ф 

как геометрического места точек плоскости, равноудаленных 
от некоторой прямой d (директриса, т.е. направляющая) и не лежа-
щей на ней точки F (фокус параболы). Если Ф* – вторая парабола, 
т.е. ГМТ плоскости, равноудаленных о т своих прямой d* и точки 
F*, то при подобии f, которое переводит директрису и фокус пара-
болы Ф  соответственно в директрису и фокус параболы Ф*, пара-
бола Ф перейдет в параболу Ф* (объясните почему).

Вопросы: 1) Сколько таких подобий f в  задаче 8.48 и чему ра-
вен их коэффициент k?

2) При помощи каких реперов R и R′ эти подобия могут быть 
заданы?
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3) Напомним, что эллипс Ф – это геометрическое место точек 
(ГМТ) плоскости, сумма расстояний которых до двух заданных то-
чек F1 и F2 (фокусы эллипса) есть величина постоянная, большая 
фокусного расстояния F1 F2. Если Ф* – второй эллипс, то при ка-
ком условии он будет подобен эллипсу Ф?

4) Аналогичный вопрос – про две гиперболы Ф и Ф*. Под ги-
перболой понимается  ГМТ плоскости, модуль разности рассто-
яний которых до двух заданных точек F1 и F2 (фокусы гипер-
болы) равен длине фиксированного отрезка, который меньше 
отрезка F1 F2.

Теорема 8.3. Формулы преобразования подобия f с коэффици-
ентом k в ортонормированном репере R = O i j имеют вид
x′ = k cos φ ∙ x – k sin φ ∙ y + c1 x′ = k cos φ ∙ x + k sin φ ∙ y + c1, 
y′ = k sin φ ∙ x + k cos φ ∙ y + c2; 

или y′ = k sin φ ∙ x – k cos φ ∙ y + c2. (8.22)
Доказательство. Образом ортонормированного репера R =

= O i j при подобии f с коэффициентом k будет ортогональной ре-
пер R' = O a′ b′, векторы a′, b′ которого взаимно перпендикулярны 
и имеют длину k:

Рис. 8.55

a′ (k cos φ, k sin φ), b' (– k sin φ, k cos φ) или b' (k sin φ, – k cos φ), 
а начало O′ в репере R имеет некоторые координаты c1 и c2. Оста-
лось подставить координаты векторов a′, b′ и точки O′ в общие 
формулы (8.16) аффинных преобразований.
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Замечание. Так как гомотетия Hm(O) – аффинное преобразова-
ние, при котором все расстояния изменяются в одно и то же число 
|m| раз, то она ортонормированный репер R = O i j переводит в ор-
тогональный репер R' = O mi mj с равными по длине векторами mi 
и mj: | mi | = | mj | = | m |. А так как аффинное преобразование может 
задаваться любой парой соответствующих реперов, то гомотетия 
Hm(O) с коэффициентом m, где m – число, отличное от нуля и еди-
ницы, – это частный случай подобия с коэффициентом k = | m |.

Вопрос. Образуют ли группу тождественно е преобразование 
плоскости id и: a) все гомотетии с данным центром О; b) все гомо-
тетии с рациональными коэффициентами m ≠ 0; c) все гомотетии 
с положительными коэффициентами m; d ) все гомотетии, коэффи-
циентами m которых являются степени числа 2 с целыми показа-
телями (m = 2 ⁿ, где n  Z); e) гомотетия H –1(O) с коэффициентом 
m = – 1, т.е. центральная симметрия ZO? Центрами всех гомотетий 
в а) – е) является фиксированная точка О.

Задача 8.49. (O, R) и (O*, R*) – окружности с центрами O, O* 
и радиусами R, R* соответственно. Будут ли эти окружности гомо-
тетичными? Рассмотрите все возможные случаи взаимного распо-
ложения окружностей и для каждого из них найдите все гомотетии, 
переводящие первую окружность во вторую. Как можно построить 
центры этих гомотетий?

Задача 8.50. Доказать, что любое преобразование подобия f 
с коэффициентом k можно представить в виде композиции гомоте-
тии с центром в произвольно выбранной точке A и коэффициентом 
k (или – k) и преобразования подобия f* с коэффициентом 1.

Доказательство. Пусть подобие f заданo при помощи орто-
нормированного репера R = O i j и ортогонального репера R' = 
= O′ a′ b′, где | a′| = | b′| = k. При гомотетии Hk(A) с центром в точке 
A и коэффициентом k ортонормированный репер R = O i j перейдет 
в ортогональный репер R̅ = O̅ ki kj, где O̅ = Hk(A) (O). Реперы R̅ и R' 
оба ортогональные, причем | k i | = | k j | = | a′| = | b′| = k. Пара таких 
реперов R̅ и R' определяет аффинное преобразование f*, которое 
будет подобием с коэффициентом 1. Искомое разложение имеет 
вид f = Hk(A) o f*.
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Рис. 8.56

Аналогично может быть рассмотрен случай гомотетии с отри-
цательным коэффициентом – k.

Задача 8.51. Доказать, что любое подобие с коэффициентом 
k ≠ 1 имеет единственную инвариантную точку.

Доказательство. Если формулы подобия в ортонормированном 
репере имеют вид

x′ = k cos φ ∙ x – k sin φ ∙ y + c1, 
y′ = k sin φ ∙ x + k cos φ ∙ y + c2, 

то система x′ = x, y′ = y для нахождения координат инвариант-
ных точек может быть записана в виде

(k cos φ – 1) x – k sin φ ∙ y + c1 = 0, 
 k sin φ ∙ x + (k cos φ – 1) y + c2 = 0. (8.23)

При k ≠ 1 и sin φ = 0 (cos φ = ± 1) система
(± k – 1) x + c1 = 0, 
(± k – 1) y + c2 = 0

имеет единственное решение.
При k ≠ 1 и sin φ ≠ 0 коэффициенты при x, y системы (8.23) 

не пропорциональны, поскольку из (k cos φ – 1) / k sin φ = 
= – k sin φ / (k cos φ – 1) следовало бы (k cos φ – 1) ² = – k2 sin²φ, 
k ² – 2k cos φ + 1 = 0, cos φ = (k ² + 1) / 2k, (k ² + 1) / 2k ≤ 1, k ² – 2k +
+ 1 ≤ 0, (k – 1) ² ≤ 0, т.е. k = 1. (Случай k cos φ – 1 = 0 рассмотрите сами.)

Если же формулы подобия имеют вид
x′ = k cos φ ∙ x + k sin φ ∙ y + c1, 
y′ = k sin φ ∙ x – k cos φ ∙ y + c2, 

то вместо (8.23) получим систему



264

Математика и информатика. Часть 2

(k cos φ – 1) x + k sin φ ∙ y + c1 = 0, 
k sin φ ∙ x – (k cos φ + 1) y + c2 = 0, 

которая при k ≠ 1 также имеет единственное решение. (Дока-
жите это!)

Вопросы: 1) Является ли ограничение k ≠ 1 существенным?
Указание. Случаю k = 1 посвящен раздел 4 этого параграфа.
2) Верно ли, что при подобии f направление (в широком смы-

сле), ортогона льное инвариантному, тоже инвариантно? Справед-
ливо ли это для произвольных аффинных преобразований?

8.7.4. Движения плоскости
Определе ние 8.12. Пусть на евклидовой плоскости задана пара 

ортонормированных реперов R = O i j и R' = O' i' j'. Аффинное 
преобразование f = (R, R′), определяемое этой парой реперов, на-
зывается движением плоскости.

Замечание. В геометрии используются физические термины 
(параллельный перенос или трансляция, поворот или вращение, 
симметрия или отражение), но нас интересует не сам процесс 
реального движения точек плоскости по каким-то траекториям, 
а лишь их исходное M и конечное M′ положения (см. параграф 1, 
определение преобразования множества). Хотя привлечение на-
глядных образов вовсе не мешает, а скорее помогает изучению 
этой важной темы. Изл ожение теории геометрических преобра-
зований плоскости (аффинных, преобразований подобия, движе-
ний) при помощи самой удобной, наибо лее тесно связанной с тем 
или иным видом преобразований множества точек евклидовой 
плоскости пары реперов R, R′, хотя их можно задавать любой парой 
соответствующих реперов R͂, R͂′, на наш взгляд придает изложению 
наглядный характер и способствует лучшему усвоению материала.

Так как движение – это подобие с коэффициентом k = 1, 
то при движении сохраняется расстояние между точками (харак-
теристическое свойство движений!), т.е. всегда A′B′ = AB. Любой 
вектор при этом, естественно, переходит в вектор той же длины, 
т.е. всегда |v′| = |v|. Движения обладают всеми свойствами аффин-
ных преобразований (см. раздел 1 параграфа 7) и преобразований 
подобия (раздел 3 этого параграфа).
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В частности, движение можно задавать любой парой соот-
ветствующих реперов R͂, R͂′.

Вопросы: 1) Как устроены соответствующие реперы R͂ = (O͂, A͂, 
B͂) и R͂' = (O͂', A͂', B͂')?

2) Выше было доказано (задача 8.50), что любое преобразова-
ние подобия f с коэффициентом k можно разложить в композицию 
гомотетии с положительным k (или отрицательным – k) коэффи-
циентом с центром в произвольно заданной точке A и некоторого 
движения f*, а также, что при k ≠ 1 преобразование подобия f имеет 
единственную инвариантную точку (задача 8.51). Что можно ут-
верждать о движении f*, если центром гомотетии является инвари-
антная точка преобразования f?

Докажите самостоятельно, по аналогии с соответствующим 
материалом раздела 3 параграфа 7, что все движения плоскости 
образуют группу. Эта группа будет подгруппой группы всех пре-
образований подобия плоскости.

Вопрос. Сколько существует движений плоскости, переводящих: 
a) отрезок AB в равный ему по длине отрезок CD; b) луч – в луч; 
c) разносторонний треугольник ABC – в равный ему треугольник 
KLM; d) квадрат ABCD – в равный ему квадрат KLMN; e) прямоу-
гольник ABCD, где AB ≠ CD – в равный ему прямоугольник KLMN; 
f) равнобедренный, но не равносторонний треугольник ABC – в рав-
ный ему треугольник KLM; g) правильный треугольник ABC – в рав-
ный ему треугольник KLM; h) ромб ABCD без прямых углов – в рав-
ный ему ромб KLMN; i) окружность – в окружность того же радиуса; 
j) окружность с отмеченной точкой M – в окружность того же ради-
уса с отмеченной точкой M′, где M′ – образ точки M?

Задача 8.52. Доказать, что множество всех движений плоско-
сти, переводящих данную фигуру Ф в себя, образует группу. Эту 
группу называют группой симметрий фигуры Ф.

Замечание. В том случае, когда эта группа состоит из одного 
тождественного пре образования id, говорят, что фигура Ф не име-
ет симметрий.

Задача 8.53. Найдите все симметрии, т.е. движения, оставляю-
щие геометрическую фигуру Ф инвариантной: a) отрезка; b) равно-
бедренного, но не равностороннего, треугольника; c) правильного 
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треугольника; d) параллелограмма ABCD с AB ≠ BC и без прямых 
углов; e) ромба без прямых углов; f) прямоугольника, у которого 
диагонали не взаимно перпендикулярны; g) квадрата; h) правиль-
ного n-угольника; i) окружности; j) пары взаимно перпендикулярных 
прямых; k) пары пересекающихся, но не взаимно перпендикуляр-
ных прямых; l) пары параллельных прямых; m) трех параллельных 
прямых, из которых одна является осью симметрии двух других; 
n) трех параллельных прямых, ни одна из которых не является осью 
симметрии двух других; o) прямой; p) луча; r) угла.
Указание. Ознакомьтесь предварительно с теоремой о класси-

фикации движений плоскости.
Из школьного курса геометрии нам известны такие движения 

плоскости как параллельный перенос (трансляция)  на вектор 
a, поворот (ротация)  с центром C на ориентированный угол φ, 
симметрия Sd относительно прямой d:

Рис. 8.57

При этом параллельный перенос на нулевой вектор и поворот 
плоскости на нулевой угол (с центром в любой точке C) – это id, 
т.е. тождественное преобразование плоскости; а поворот плоско-
сти на угол 180° с центром в точке C – это центральная симметрия 
ZС, которая является, таким образом, частным случаем поворота, 
но обладает по сравнению со всеми остальными поворотами пло-
скости целым рядом дополнительных свойств.

Напомним основные свойства этих движений:
1) У всех параллельных переносов, за исключением переноса 

на нулевой вектор, т.е. тождественного преобразования плоско-
сти: нет инвариантных точек; любой вектор MM', где M′ =  (M), 
ра вен вектору переноса a;  любое направление инвариантно; одно 
из направлений, а именно – направление вектора переноса a, цели-
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ком состоит из инвариантных прямых; любая прямая d другого на-
правления переходит в прямую d′, которая параллельна d (в узком 
смысле, т.е. в смысле классического определения параллельных 
прямых по Евклиду).

2) У в сех поворотов плоскости  с центром в точке C на угол 
φ, где – 180° < φ ≤ 180°, за исключением поворотов на нулевой 
и развернутый углы: единственная инвариантная точка – центр по-
ворота C, нет инвариантных направлений (и тем более инвариант-
ных прямых), все окружности с центром C инвариантны; все углы 
MCM′, где M′ – образ точки M ≠ C при повороте , равны ориен-
тированному углу φ (при положительном φ поворот «осуществля-
ется» против часовой стрелки, при отрицательном – по часовой).

При φ = π поворот оказывается гомотетией с центром C и ко-
эффициентом m = – 1 или центральной симметрией ZС. Поэтому 
(см. свойства гомотетии в разделе 1 параграфа 7) все прямые, про-
ходящие через точку C, будут инвариантными прямыми, а, значит, 
любое направление в широком смысле тоже будет инвариантным.

3) У всех осевых симметрий Sd: имеется прямая инвариантных 
точек – ось сим метрии d; для любой другой точки M ось d служат 
серединным перпендикуляром отрезка MM′, где M′ – образ точки 
M при осевой симметрии Sd; инвариантными прямыми будет сама 
ось d, все точки которой инвариантны, а также все прямые перпен-
дикулярного ей направления; направление оси симметрии d и ему 
перпендикулярное инвариантны.

Каждое из рассмотренных движений плоскости можно задать па-
рой ортонормированных реперов R = O i j и R' = O' i' j' (см. рис. 8.58):

Рис. 8.58
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Вопрос. Какие из формул
x′ = x,   x′ = x  + a1,  x′ = cos φ ∙ x – sin φ ∙ y,  x′  = x   + a (a ≠ 0), 
y′ = – y;  y′ =  y + a2;  y′ = sin φ ∙ x + cos φ ∙ y;  y′ =  – y;
записанных в ортонормированном репере R = O i j (см. 

рис. 8.58!), являются формулами параллельного переноса, поворо-
та, осевой симметрии, а какие оказываются «лишними»?

Можно понять, что «лишними» оказались формулы компози-
ции осевой симметрии Sd (ось симметрии d совмещена с осью аб-
сцисс!) и параллельного переноса вдоль оси d на ненулевой вектор 
a (a, 0), т.е. Sd o  (a || d). В данном случае можно было, кстати, 
написать и  o Sd (почему?). Это движение не рассматривалось 
в школе, оно называется скользящей симметрией, обозначается  
и обладает следующими свойствами:

4) У всех скользящих симметрий : нет инвариантных точек; 
два инвариантных направления – направление оси d и ему перпен-
дикулярное; единственная инвариантная прямая – ось d; середины 
всех отрезков MM′, где M′ – образ точки M при скользящей симмет-
рии , расположены на оси d.

Замечание. При изучении движений плоскости для лучше-
го понимания их свойств весьма полезно использовать нагляд-
ные образы, т.е. реальные физические движения: параллельный 
перенос, поворот, осевую симметрию, скользящую симметрию, 
но при этом не следует забывать, что в геометрии важны исходное 
M и конечное M′ положения каждой точки, а не то, как точка М 
попала в точку М′.

Перечисленными четырьмя видами движений исчерпываются 
все движения евклидовой плоскости. Докажем это.

Теорема 8.4. (О классификации движений плоскости). Любое 
движение f евклидовой плоскости, отличное от тождественного 
преобразования id, является либо параллельным переносом на не-
нулевой вектор, либо пово ротом на ненулевой уго л, либо осевой, 
либо скользящей симметр ией.

Замечание. Подобно тому, как число 1, не будучи ни простым, 
ни составным, не позволяет разбить все натуральные числа на два 
класса – простых и составных чисел, так и простейшее из преобра-
зований плоскости – тождественное, мешает разбить все движения 
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плоскости на четыре класса, ибо id может считаться и параллель-
ным переносом на нулевой вектор, и поворотом на нулевой угол 
с центром в произвольной точке A.

Для доказательства теоремы воспользуемся формулами движе-
ния f, записанными в ортонормированном репере R = O i j. Послед-
ние получаются из формул преобразования подобия (8.22) при зна-
чении коэффициента подобия k = 1:

x′ = cos φ ∙ x – sin φ ∙ y +  c1,(|) x′ = cos φ ∙ x + sin φ ∙ y + c1, (||)
y′ = sin φ ∙ x + cos φ ∙ y + c2; y′ = sin  φ ∙ x – cos φ ∙ y + c2. (8.24)
Рассмотрим сначала формулы (|). При φ = 0 они дают нам

x′ = x + c1, 
y′ = y + c2

формулы параллельного переноса на вектор c (c1, c2), так как 
MM (x′ – x, y′ – y) = c.

Пусть φ ≠ 0. Тогда движение (|) имеет  единственную инвариант-
ную точку A. Действительно, система x′ = x, y′ = y для нахождения 
координат x, y инвариантных точек движения (|) приводится к виду

(cos φ – 1) x – sin φ ∙ y + c1 = 0, 
sin φ ∙ x + (cos φ – 1) y + c2 = 0, 

а коэффициенты при x, y в этих уравнениях не пропорциональ-
ны, ибо при φ ≠ 0  (cos φ – 1) ² + sin² φ ≠ 0.

При этом движении ортонормированный репер R͂ = A i j перей-
дет в ортонормированный репер R͂' = A i' j'

Рис. 8.59

а такие реперы R͂ и R͂' опрeделяют поворот  (см. рис. 8.58).
Для движения f, формулы которого в ортонормированном ре-

пере репере R = O i j имеют вид (||), докажем, что у него всегда 
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имеется ровно два взаимно перпендикулярных инвариантных на-
правления. Для доказательства воспользуемся формулами (8.20) 
преобразования векторов f v

v1' = cos φ ∙ v1 + sin φ ∙ v2, 
v2' = sin φ ∙ v1 – cos φ ∙ v2, 

связанного с движением (||). Ищем ненулевые векторы v (v1, v2), 
которые при движении (||) инвариантны или переходят в  векторы 
– v («о прокидываются»). Для этого  решаем системы

v1 = cos φ ∙ v1 + sin φ ∙ v2, – v1 = cos φ ∙ v1 + sin φ ∙ v2, 
v2 = sin φ ∙ v1 – cos φ ∙ v2; – v2 = sin φ ∙ v1 – cos φ ∙ v2.

Перепишем их в виде
(cos φ – 1) v1 + sin φ ∙ v2 = 0, (cos φ + 1) v1 + sin φ ∙ v2 = 0, 
sin φ ∙ v1 – (cos φ + 1) v2 = 0;  sin φ ∙ v1 – (cos φ – 1) v2 = 0.
При φ = 0 из первой системы (0 = 0, – 2v2 = 0) находим инва-

риантный орт i, из второй (2v1 = 0, 0 = 0) – «опрокидывающий-
ся» орт j.

При φ ≠ 0 коэффициенты при v1, v2 в обеих системах пропорцио-
нальны, т.е.

sin φ / (cos φ –   1) = – (cos φ + 1) / sin  φ и (cos φ + 1) / sin φ =
= sin φ / – (cos φ – 1).

(Убедитесь самостоятельно в справедливости последнего  ут-
верждения!) Поэтому в обоих случаях существуют ненулевые ре-
ш ения v1, v2.

Вопрос. Почему решения этих д вух систем будут взаимно пер-
пендикулярными?

А теперь введем вспомогательный ортонормированный репер 
R͂ = O i' j', где i′ – инвариантный, а j' – «опрокидывающийся» орт  
движения (||). В этом репере формулы движения f примут более 
простой вид

x͂′ = x͂     + c1, 

y͂′ =    – y͂ + c2,  (8.25)

так как (i′)′ = i′(1, 0), (j′)′ = – j′(0, – 1) в базисе i′, j′, а O′ (c1, c2) 
в репере R͂ = O i′ j′. Движение (||), которое теперь задано формулами 
(8.25), имеет инвариантные точки iff совместна система
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x͂ = x͂    + c1, 
y͂ =   – y͂ + c2, 

iff c1 = 0. Инвариантных точек у движения в этом случае будет 
целая прямая d c уравнением y͂ = ½ c2. Если ввести еще один вспо-
могательный ортонормированный репер R̅ = B i′ j′, связав его с пря-
мой инвариантных точек d:

Рис. 8.60

то образом репера R̅ = B i′ j' будет репер R̅' = B i′ – j'. Пара таких 
ортонормированных реперов R̅, R̅' определяет осевую симметрию 
Sd (см. рис. 8.58).

При c1 ≠ 0 у движения (8.25) нет инвариантных точек. Покажем, 
что в этом случае движениe (8.25) имеет ровно одну инвариантную 
прямую m. Направление инвариантной прямой задается одним 
из базисных векторов i′, j' (почему?), т.е. инвариантную прямую 
m следует искать среди прямых x͂ = c или прямых y͂ = c. Прямая 
с уравнением x͂ = c инвариантна при движении (8.25) iff ее про-
образ x͂′ = c, т.е. прямая x͂ + c1 = c, совпадает с ней iff c1 = 0, но у нас 
c1 ≠ 0.

Прямая m с уравнением y͂ = c инвариантна при движении (8.25) 
iff ее прообраз y͂′ = c, т.е. прямая – y͂ + c2 = c, совпадает с ней iff 
c2 – c = c iff c = ½ c2. Таким образом, при c1 ≠ 0 прямая m с урав-
нением y͂ = ½ c2 будет единственной инвариантной прямой дви-
жения (8.25). Вновь воспользуемся еще одним вспомогательным 
ортонормированным репером  = D i′ j′, который свяжем с инвари-
антной прямой m:
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Рис. 8.61

Находим его образ ′ = D′ i′ – j′, где D′ – некоторая точка ин-
вариантной прямой m, отличная от точки D, поскольку при c1 ≠ 0 
у движения (8.25) нет инвариантных точек. Пара ортонормирован-
ных реперов  и ' определяет композицию осевой симметрии Sm 
и параллельного переноса на ненулевой вектор DD' вдоль оси m, 
т.е. движение f в данном случае будет скользящей симметрией. 
Теорема о том, что на плоскости существует ровно четыре вида 
движений: параллельный перенос, поворот, осевая и скользящая 
симметрия, доказана.

Задача 8.54. Известно, что любое подобие f с коэффициентом 
k ≠ 1, т.е. отличное от движения, имеет единственную инвариант-
ное точку (задача 8.51), а также что подобие f можно представить 
в виде композиции гомотетии с центром в произвольной точке 
A и коэфф ициентом k (или – k) и некоторого движения f* (зада-
ча 8.5  0). Что можно  сказать нового о движении f*, если в качестве 
цент ра гомотетии выбрана инвариантная точка A подобия f, – с уче-
том доказанной теоремы о классификации движений плоскости? 
(См. этот же вопрос в самом начале раздела 4 параграфа 7.)

Вопросы: 1) Существует ли подобие, имеющее: a) две инва-
риантные точки; b) ровно две инвариантные точки; c) три инва-
риантные прямые, содержащие стороны некоторого треугольника; 
d) три инвариантные прямые, две из которых параллельны, а тре-
тья является секущей?

2) Что можно сказать о движении f: a) имеющем две инвариан-
тные точки; b) имеющем одну инвариантную точку; c) имеющем 
ровно одну инвариантное точку; d) не имеющем инвариантных 
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точек; e) не имеющем инвариантных прямых; f) имеющем две ин-
вариантные параллельные прямые; g) имеющем две инвариантные 
пересекающиеся прямые; h) имеющем три инвариантные прямые, 
изображенные на следующих рисунках?

Рис. 8.62

3) Сколько инвариантных направлений (в широком смысле) мо-
жет иметь движение плоскости?

Как в ортонормированном репере R = O i j записываются фор-
мулы параллельного переноса  на вектор a (a1, a2); поворота  
с центром в точке A (a1, a2) на угол φ (центральной симметрии Z A 
с центром A (a1, a2)); осевой симметрии с осью d: A x + B y + C = 0; 
скользящей симметрии  с осью d: A x + B y + C = 0 и вектором
a (a1, a2) ≠ 0, который параллелен оси d (A a1 + B a2 должно быть 
равно нулю, так как скалярное произведение вектора нормали
n (A, B) прямой d и ее направляющего вектора a (a1, a2) равно нулю)?

Мы приведем лишь готовые ответы. Попробуйте доказать, 
что указанные формулы действительно являются формулами этих 
движений. Для этого в случае 1) найдите координаты вектора
MM'; в случаях 2) и З) сначала найдите координаты векторов i', j' 
и убедитесь, что эти векторы являются взаимно перпендикулярны-
ми ортами, т.е. что формулы 2) и 3) являются формулами движе-
ния, а затем найдите их инвариантные точки; в последнем случае 
следует увидеть, что формулы 4) – это формулы композиции дви-
жений, заданных формулами 3) и 1).
1)   :  x′ = x + a1,  2)  :   x′ = cos φ ∙ (x – a1)  – sin φ ∙ (y – a2) + a1, 
     y′ = y + a2;       y′ = sin φ ∙ (x – a1)  + cos φ ∙ (y – a2) + a2;

3)  Sd:  x′ = x – (A x + B y + C) 2A / (A² + B²),
    y′ = y – (A x + B y + C) 2B / (A² + B²);
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4)  :  x′ = x – (A x + B y + C) 2A / (A² + B²) + a1, 
    y′ = y – (A x + B y + C) 2B / (A² + B²) + a2.
Вопрос. Как записать формулы композиции f o g и g o f пре-

образований f и g плоскости, которые заданы своими формулами? 
Например, пусть f – параллельный перенос на вектор a (1, 3), а g – 
параллельный перенос на вектор b (4, 5). Их формулы в ортонор-
мированном репере R = O i j имеют видf: x′ = x + 1, g: x′ = x + 4, 

 y′ = y + 3;  y′ = y + 5.
Пусть точка М (x, y) при f перейдет в M* (x*, y*), a точка M* 

при g перейдет в M′ (x′, y′):

Рис. 8.63

Тогда
f: x* = x + 1, g:  x′ = x* + 4, 
 y* = y + 3;  y′ = y* + 5.

Надо выразить координаты x′, y′ точки M′ через координаты x, y 
точки M. Получим

f o g: x′ = (x + 1) + 4, или x′ = x + 5, 
 y′ = (y + 3) + 5;  y′ = y + 8.

Формулы композиции g o f найдите самостоятельно. Сравни-
те и объясните полученный результат. Можно понять, что всегда

 o  =  o , т.е. композиция параллельных переносов пере-
становочна или коммутативна.
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А теперь найдем композицию двух осевых симметрий Sm и Sn 
с параллельными осями m: x = 1 и n: x = 2. Система координат – 
прямоугольная декартова.

Пользуясь приведенными выше формулами осевой симметрии 
3) в ортонормированном репере, запишем уравнения обеих сим-
метрий:

Sm: x′ = x – (x – 1) 2 × 1 / (1² + 0²), или x′ = – x + 2, 
 y′ = y – (x – 1) 2 × 0 / (1² + 0²);  y′ = y;
Sn: x′ = x – (x – 2) 2 × 1 / (1² + 0²), или x′ = – x + 4, 
 y′ = y – (x – 2) 2 × 0 / (1² + 0²);  y′ = y.
Перепишем эти формулы в удобном для нахождения формул 

композиции Sm о Sn виде
 Sm: x* = – x + 2, Sn: x′ = – x* + 4, 
  y* = y;  y′ = y*.
Тогда
 Sm o Sn: x′ = – (–x + 2) + 4, или x′ = x + 2, 
  y′ = y;  y′ = y.
Полученные нами формулы являются формулами параллельно-

го переноса на вектор a (2, 0).
Для того, чтобы получить уравнения композиции Sn o Sm (Sn o Sm = ? 

(равно ли?) Sm o Sn), перепишем уравнения осевых симметрий Sn и Sm 
в виде
Sn:     x* = – x + 4,       Sm:  x′ = – x*  + 2, 
     y* =  y;           y′ =  y*.
Тогда

 Sn o  Sm:  x′ = – (– x + 4)  + 2,  или   x′ = x – 2, 
     y′ =  y;           y′ = y.
На этот раз мы получили формулы параллельного переноса 

на вектор – a (– 2, 0). Попробуйте объяснить полученный результат 
при помощи чертежа и получить наглядное подтверждение тому, 
ч то Sn o Sm ≠ Sm o Sn.

Вопросы. 1) Коммутативна ли композиция: a) движений; 
b) параллельных переносов; c) поворотов с фиксированным 
центром?

2) Образуют ли группу: a) все параллельные переносы плоско-
сти; b) все параллельные переносы в одном (в широком смысле) 



276

Математика и информатика. Часть 2

направлении; c) все параллельные переносы на векторы вида n ∙ a, 
где a – фиксированный ненулевой вектор, а n  N (n  N0, n  Z, 
n  Q); d) все параллельные переносы на векторы вида m i + n j, 
где числа m и n – оба целые (либо оба четные, оба рациональные, 
оба иррациональные)? Будут ли эти группы трансляций абелевы-
ми или коммутативными?

Напомним, что N, N0, Z, Q – это, соответственно, множества 
натуральных (лат. Natura), целых неотрицательных (N с нулем!), 
целых (нем. Zahl) и рациональных (лат. Quota) чисел;

N  N0  Z  Q.
3) Образуют ли группу: a) все повороты с фиксированным цен-

тром A; b) все повороты с фиксированным центром A и углами по-
ворота вида n × 30°, где число n – целое (рaциональное)? Будут 
ли эти группы поворотов абелевыми?

Задача 8.55. Найти наименьшую группу движений, которая 
содержала бы: a) параллельный перенос на заданный ненулевой 
вектор a; b) поворот с центром в точке A на угол 45°; c) централь-
ную симметрию ZA; d) осевую симметрию Sd; e)* два данных па-
раллельных переноса  и , где векторы a и b не коллинеарны.

Напомним, что симметрией геометрической фигуры Ф (Ф – 
любое множество точек плоскости) называется любое дви-
жение плоскости, при котором эта фигура переходит в себя, 
а также что все симметрии геометрической фигуры Ф образу-
ют группу – так называемую группу симметрий геометриче-
ской фигуры Ф.

Прямая d называется осью симметрии фигуры Ф, если при осе-
вой симметрии Sd фигура Ф переходит в себя («остается на месте», 
инвариантна, т.е. не изменяется).

Точка A называется центром вращения (поворота) порядка n 
фигуры Ф, если при повороте вокруг точки A на угол 360° / n фи-
гура Ф переходит в себя. Здесь n – натуральное число, которое 
больше 1.
Элементами симметрии геометрической фигуры Ф называют-

ся ее оси симметрии, центры симметрии, центры вращения поряд-
ка n (n > 1) и т.д., т.е. элементы тех движений, при которых эта 
фигура переходит в себя.
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Примеры:
1) Разносторонний треугольник не имеет элементов симметрии, 

так как инвариантен только при одном единственном движении 
плоскос ти – id, а в этом случае считается, что геометрическая фи-
гура не обладает симметриями.

2) Равнобедренный, но не равносторонний треугольник, имеет одну 
ось симметрии.

3) Правильный треугольник имеет три оси симметрии и центр вра-
щения третьего порядка.

4) Параллелограмм, который не является ни ромбом, ни прямоуголь-
ником, имеет только центр симметрии (это центр вращения 2-го 
порядка).
Задача 8.56. Найдите элементы симметрии: a) ромба, не являюще-

гося квадратом; b) прямоугольника, не являющегося ромбом; c) квадра-
та; d) правильного шестиугольника; e) отрезка; f) луча; g) пары парал-
лельных прямых; h) пары пересекающихся, но не перпендикулярных 
прямых; i) пары взаимно перпендикулярных прямых; j) равнобедрен-
ной трапеции; k) окружности (круга); l) одноточечного множества; 
m) цифр почтового индекса; n) римских цифр I, V, X, L, C, D, M; o) букв 
A, B, C, ..., X, Y, Z латинского алфавита; p) букв А, Б, В, ..., Э, Ю, Я рус-
ского алфавита; q) пяти орнаментов (пятый придумайте сами!):

Рис. 8.64
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Задача 8.57. Каким движением может быть композиция двух 
осевых симметрий? Решение. 1-й способ. Задачу с непараллель-
ными осями можно решить с использованием формул осевых сим-
метрий – подобно тому, как выше мы нашли композицию осевых 
симметрий с параллельными осями. Но даже при решении задачи 
в удобной системе координат (когда начало O совмещено с точкой 
пересечения осей этих симметрий, а одна из координатных осей – 
с осью первой симмет рии) могут возникнуть определенные труд-
ности.

2-й способ. Воспользуемся чертежом:

Рис. 8.65

В случае параллельных осей m и n мы видим, что | MM′ | =
= 2 ∙ ρ (m, n), MM′  m (n), вектор MM' «направлен» от первой оси 
m ко второй n. Делаем вывод о том, что композиция Sm o Sn в этом 
случае будет параллельным переносом на вектор a, длина которого 
равна удвоенному расстоянию между осями m и n, а направление 
(у векторов оно в узком смысле!) перпендикулярно m (n) и «смот-
рит» от m к n: Sm o S n = . Ясно, что Sn o Sm =  , поэтому 
Sm o Sn ≠ Sn o Sm.

Если же оси m и n пересекаются и A = m ∩ n, то из чертежа мож-
но понять, что AM = AM* = AM′, а угол MAM′ равен удвоенному 
углу φ между прямыми m и n, т.е. в этом случае композиция Sm o Sn 
будет поворотом плоскости  с центром A на угол 2 φ, где φ – вели-
чина ориентированного угла между прямыми m и n: Sm o Sn = . 
И здесь Sm o Sn ≠ Sn o Sm, поскольку Sn o Sm = .
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3-й способ. Воспользуемся заданием движений при помощи 
пары ортонормированных реперов. В случае параллельных осей m 
и n выберем в качестве исходного ортонормированный репер R =
= O i j, у которого начало O расположено на прямой m, а орт i яв-
ляется направляющим вектором этой прямой. Строим образ репе-
ра R при симметрии Sm – получим ортонормированный репер R* =
= O i – j. Затем строим образ промежуточного репера R* при сим-
метрии Sn – получим ортонормированный репер R' = O' i j:

Рис. 8.66

Видим, что композиция Sm o Sn переводит репер R = O i j в репер 
R' = O' i j, т.е. является параллельным переносом на вектор OO', 
равный описанному выше вектору a.

Во втором случае начало ортонормированного репера R  совме-
стим с точкой пересечения прямых m и n, а орт i вновь направим 
по прямой m. В результате аналогичных построений получим ор-
тонормированный репер R' = O i' j' (см. рис. 8.67):
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Рис. 8.67

Можно понять, что пара ортонормированных реперов R и R′ 
определяет поворот вокруг точки A пересечения прямых m и n 
на двойной угол между этими прямыми.

В качестве следстви  я из разобранной задачи мы получаем прак-
тический способ разложения параллельных переносов и поворо-
тов в композицию двух осевых симметрий (как в каждом случае 
следует выбирать оси этих симметрий?), а также следующую тео-
рему.

Теорема 8.5. Любое движение плоскости может быть представ-
лено в виде композиции не более трех осевых симметрий.

Задача 8.58. Найти композицию скользящих симметрий  
с одинаковыми осями.

Решение. В силу ассоциативности композици   и преобразований, 
которая была доказана в первом параграфе, 

 = (  o Sm) o (Sm o  =  o (Sm o (Sm o )) =
= o ((Sm o Sm) o ) =  o (id o )) =  o  = .

В частности, ( ) ² =  = .
Задача 8.59. Найти композицию скользящих симметрий  o 

с параллельными осями m и n. Решение.  o  = (  o Sm) o (Sn o
o  = o (Sm o (Sn o )) =  o ((Sm o Sn) o ) =  o (  o ) =
=  o  = , где k = a + (c + b) = a + (b + c) = (a + b) + c, а c – 
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вектор, длина которого равна удвоенному расстоянию между ося-
ми m и n, который перпендикулярен им и направлен от первой оси 
m ко второй n:

Рис. 8.68

При решении последних двух задач мы, помимо известного 
свойства ассоциативности композиции преобразований, пользова-
лись результатами задачи 8.57 о композиции Sm o Sn, а также тем, 
что  = Sm o  =  o Sm.

Задача 8.60. Дан квадрат ABCD. Найти композицию ZA o ZB o
o ZC o Z D.

Решение. В силу ассоциативности композиции преобразований 
мы можем написать

ZA o ZB o ZC o ZD = (ZA o ZB) o (ZC o ZD). (Попробуйте доказать это 
самостоятельно!) Из

Рис. 8.69

видим, что композиция ZA o ZB – это параллельный перенос 
на вектор 2 AB. Поэтому ответом в нашей задаче будет компози-
ция двух параллельных переносов на векторы 2 AB и 2 CD со-
ответственно, т.е. параллельный перенос на вектор 2 AB + 2 CD, 
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который является параллельным переносом на нулевой вектор 
или тождественным преобразованием плоскости.

Замечание. Зная результат, можно предложить более простое ре-
шение этой задачи: убедитесь в том, что точки A, B, C – инвариант-
ные точки композиции ZA o ZB o ZC o ZD  ((ZA o ZB) o ZC) o ZD (def – 
сокр. от defi nition, определение; при отсутствии скобок действия 
выполняются по порядку, слева направо).

Попробуйте самостоятельно найти композиции ZA o ZC o ZB o ZD, 
ZA o ZD o ZC o ZB, ZA o ZB o ZD o ZC, ZA o ZB o ZA o ZC o ZA o ZD, (ZA)⁴, 
(ZA)³³ и т.п.

Решите аналогичную задачу о композиции ZA o ZB o ZC o ZD для: 
a) параллелограмма; b) трапеции; c) произвольного четырехуголь-
ника ABCD.

Задача 8.61. Докажите, что группа симметрий правильного n-
угольника содержит 2n симметрий. 
Указание. Свяжите с n-угольником удобный репер из трех со-

седних вершин.
Задача 8.62. Найдите все симметрии обычной синусоиды.
Вопросы: 1) Почему среди симметрий правильного n-угольни-

ка не может быть ни параллельного переноса на ненулевой вектор, 
ни скользящей симметрии?

2) Верно ли, что если группа симметрий геометрической фигуры 
Ф содержит параллельный перенос на ненулевой вектор или сколь-
зящую симметрию, то эта фигура не может быть ограниченной?

Задача 8.63. Где больше симметрий: у шахматной доски 8 x 8 
или у маленькой шахматной досточки 2 x 2? Можно ли увеличить 
(уменьшить) число симметрий, если вместо обычного расположе-
ния на этих досках как-то иначе расположить 32 белые и 32 черные 
(соответственно две и две) клетки?
Указание. Свяжите с угловой клеткой доски определенного цве-

та удобный репер. Ее образом может быть только угловая клетка 
того же цвета!

Вопрос. Почему в последнем указании слова может быть вы-
делены курсивом? В чем отличие может быть от будет?

Задача 8.64. Каким может быть число симметрий у поля 9 x 9 
классического судоку: а) на котором не заполнена ни одна клетка; 
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b) на котором только в одну (две, три, ..., девять) клетку аккуратно 
вписана симметричная восьмерка 8?

Приведем примеры нескольких задач на построение, при реше-
нии которых целесообразно использовать подходящие движения 
или другие геометрические преобразования плоскости, которые 
рассматривались нами в параграфе 7.

Задача 8.65. В данный остроугольный треугольник ABC впи-
сать квадрат KLMN так, чтобы его сторона KL лежала на основа-
нии AB, а вершины M и N, соответственно, на боковых сторонах 
BC и CA.

Решение. Анализ. Если KLMN – искомый квадрат, то при помо-
щи гомотетии Hk (A) с центром A и некоторым коэффициентом k, 
где 0 < k < 1, этот квадрат перейдет в квадрат K′L′M′N′, сторона 
K′L′ которого будет лежать на основании AB данного треугольни-
ка, вершина N′ – на стороне AC, и только одна вершина квадрата 
K′L′M′N′, а именно M′, не будет находиться там, где ей положено 
быть по условию задачи. Мы временно отказываемся от этого тре-
бования, сохраняя все остальные, и этот тактический прием позво-
лит нам решить задачу:

Рис. 8.70

Квадрат K′L′M′N′ легко может быть построен, а от него к иско-
мому квадрату KLMN поможет «вернуться» обратное преобразова-
ние – тоже гомотетия с тем же центром A, но с коэффициентом k–1, 
а лучше сказать та, которая точку M′ переводит в точку M пересе че-
ния стороны BC и луча AM′. В итоге точка М первой(!) займет свое 
место, а вслед за ней из точек K′, L′, N′ будут получены точки K, L, N. 
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Остальные три этапа решения этой задачи на построение (построе-
ние, доказательство и исследование) завершите самостоятельно.

Задача 8.66. В данную окружность (O, R) вписать треугольник, 
подобный данному.
Указание. Опишите около  данного треугольника окружность 

(O′, r), а затем воспользуйтесь параллельным переносом на вектор 
O'O и гомотетией Hk (O) с центром O, коэффициент k которой равен 
отношению радиусов данной и вспомогательной окружностей, т.е. 
k = R : r. Будьте внимательны при проведении исследования в этой 
задаче! Вспомните, сколько подобий переводят одну окружность 
в другую.

Задача 8.67. Построить правильный треугольник, одна верши-
на которого расположена в данной точке A, вторая – на данной пря-
мой l, третья – на данной окружности (O, R).

Решение. И в этой задаче мы ограничимся только анализом. За-
кончить решение задачи на построение предлагается самим.
Анализ. Если ABC – искомый правильный треугольник, то B  l, 

а вершина C  окр.(O, R):

Рис. 8.71

При повороте  с центром A на угол 60° точка B перейдет 
в точку C, лежащую на окружности (O, R). Так как B  l, то точка 
B′ = C будет принадлежать пересечению окружности (O, R) и обра-
за l' = (l) прямой l.

От точки C пересечения прямой l' и окружности (O, R) к точке 
B «возвращаемся» при помощи обратного движения, т.е. при помо-
щи поворота RA

–60° с тем же центром A, но на угол –60°.
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Замечание. Надо строить и прямую l′ = RA
60° (l), и прямую l'' = 

= RA
–60°(l). Количество решений (правильных треугольников ABC) 

будет зависеть от того, сколько точек пересечения дадут окруж-
ность (O, R) и пара построенных прямых l'  l'' (от 0 до 4).

Задача 8.68. В острый угол ABC вписана окружность, касаю-
щаяся обеих сторон угла. Построить окружность, которая касается 
данной окружности и сторон угла.
Указание. Воспользуйтесь гомотетией с центром B и ее свой-

ствами. Не ошибитесь и в этой задаче с определением количества 
решений!

Задача 8.69. Даны прямая d и точки  A, B, лежащие в одной по-
луплоскост и с границей d. Н а прямой d требуется найти то чку C 
такую, чтобы сумма длин отрезков AC и BC была минимальной.

Решение. Вновь приводим только первый этап решения. Анализ. 
Пусть точка C – искомая. При осевой симметрии Sd с осью d точка 
B перейдет в точку B′, при этом CB′ = CB, и AC + BC = AC + B′C. 
Длина ломаной ACB′ будет минимальной iff точка C будет точкой 
отрезка AB′:

Рис. 8.72

Задача 8.70. Две параллельные прямые a и b являются бере-
гами канала, A и B – населенные пункты, расположенные по раз-
ные стороны канала. Требуется построить мост A*B* так, чтобы 
он был перпендикулярен берегам канала, и при этом длина лома-
ной AA*B*B была минимальной.
Указание. Можно воспользоваться параллель ным переносом 
 на вектор n (см. рис.):
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Рис. 8.73

Тогда AA* + B*B = A′B, где A′ =  (A).
Задача 8.71. Восстановить квадрат KLMN по его центру O 

и двум точкам: точке A, которая лежала на стороне KL, и точ-
ке B, которая лежала на противоположной стороне квадрата MN. 
По условию точка О не лежит на прямой AB.
Указание. Можно воспользоваться тем, что центр O квадрата 

является центром вращения 4-го порядка:

Рис. 8.74

Задача 8.72. Восстановить правильный шестиугольник 
ABCDEF по его центру O и двум точкам K, L стороны AB.

Задача 8.73. Построить правильный n-угольник, центр которо-
го находится в данной точке O, а вершины располагаются, соответ-
ственно, на n данных попарно различных окружностях (окружно-
стях и прямых; прямых).  Число n = 3, 4, 5*, 6, 10*.
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Указание. Центр правильного n-угольника является центром 
вращения порядка n, поэтому нужно использовать повороты пло-
скости с центром O на углы 120°, 90°, 72°, 60°, 36°. Для решения 
задач со звездочкой предварительно разберите задачу о построе-
нии правильного 10-угольника.

Задача 8.74. Построить равнобедренную трапецию ABCD по се-
редине M верхнего основания CD, центру O описанной окружно-
сти и точкам K, L боковых сторон BC и DA.
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ГЛАВА 9.
ВЕЛИЧИНЫ

9.1. ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ

Определение 9.1. Величиной принято называть какое-либо 
свойство объектов (предметов или явлений), которое можно в ка-
ком-то смысле точно измерить.

Например, скорость движения предмета в пространстве (ска-
жем, скорость самолета) – это величина.

Определение 9.2. Если две величины характеризуют одно 
и то же свойство объектов, то говорят, что это величины одного 
рода (или однородные величины).

Например: высота дерева, глубина океана, ширина плеч и длина 
дороги – это величины одного рода.

Определение 9.3. Величину называют скалярной, если резуль-
тат ее измерения можно выразить одним вещественным числом.

Скорость выработки паутины пауком – это скалярная величина. 
Вообще любая скорость, понимаемая как производительность, яв-
ляется скалярной величиной.

Замечание. Напротив, скорость самолета не является скаляр-
ной величиной. Для точной характеристики скорости самолета 
мы должны знать направление, в котором движется самолет, а это 
направление задано своими тремя проекциями на три координат-
ные оси. Поэтому для задания скорости самолета нужны три чи-
сла, а не одно.

Определение 9.4. Скалярную величину называют положитель-
ной, если результат ее измерения может быть задан положитель-
ным вещественным числом.

Всякая скорость, понимаемая как производительность, являет-
ся положительной скалярной величиной
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Плотность вещества (например, плотность воды при комнатной 
температуре) – это также положительная скалярная величина.

Определение 9.5. Если для положительных скалярных величин 
из некоторой совокупности G однородных величин имеет смысл 
операция сложения, то такие величины называют аддитивными.

Как мы увидим ниже, длина – типичная положительная скаляр-
ная аддитивная величина. Скорость, понимаемая как производи-
тельность, также является положительной скалярной аддитивной 
величиной.

В то же время плотность вещества аддитивной величиной 
не является (плотности веществ не складываются при смешении 
веществ).

9.2. АКСИОМЫ А.Н. КОЛМОГОРОВА

Известный математик и педагог А.Н. Колмогоров ввел в рас-
смотрение систему из 10 аксиом, характеризующих абстрактную 
систему G однородных положительных скалярных аддитивных 
величин. При этом он взял за основу привычные («очевидные») 
свойства таких величин, как длина, масса, время, площадь, объем, 
производительность, стоимость.

Мы приведем здесь не весь список аксиом Колмогорова, а толь-
ко важнейшие из этих аксиом, допускающие сравнительно легкую 
проверку на практике в случае конкретных величин. (Полный спи-
сок колмогоровских аксиом можно найти, например, в [1].)

Аксиома 1. Для любых двух величин a и b из системы G опреде-
лена (и притом единственным образом) их сумма a + b.

Аксиома 2. Операция сложения в G коммутативна и ассоциа-
тивна.

Аксиома 3. Для любых двух величин a и b из системы G верно 
одно и только одно из соотношений:
 a < b, a = b, b < a. (9.1)

Здесь отношение «меньше» вводится с помощью следующего 
определения:

a < b тогда и только тогда, когда существует с из системы G 
такое, что a + c = b.
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Аксиома 4. Для любой величины a из системы G и любого нату-
рального n найдется такая величина b из сиcтемы G, что 
 nb = a. (9.2)
Здесь через nb обозначена сумма n слагаемых:

nb = b + b + … + b.
Опираясь на эти аксиомы и еще на ряд более трудных математи-

ческих аксиом, Колмогоров установил следующий важный результат.
Теорема Колмогорова 9.1. В системе G, подчиняющейся ак-

сиомам Колмогорова, определено умножение величин на положи-
тельные вещественные числа. При этом любые две величины a и b 
из G связаны между собой соотношением
 a = wb,  (9.3)

где w – некоторое положительное вещественное число.
Замечание. Введем в системе G в качестве единицы величины 

(или, как иногда говорят, единицы измерения величины) некото-
рую величину e.

Тогда для произвольно взятой величины a из G будем (в силу 
теоремы 9.1) иметь:
 a = me(a) e. (9.4)

В правой части равенства (9.4) стоит произведение веществен-
ного числа me(a) (называемого мерой величины a при единице из-
мерения e) на величину е.

Замечание. Пусть a и b – любые две величины из G. Тогда не-
трудно показать, что
 me(a + b) = me(a) + me(b). (9.5)

Это свойство называется аддитивностью меры.
Замечание. Пусть a, e, f – произвольно взятые величины из G. 

Тогда нетрудно вывести формулу:
 mf(a) = me(a)mf(e). (9.6)

Это свойство называется мультипликативностью меры.

9.3. ДЛИНА

Вначале определим длину отрезка как класс отрезков, ко-
торые можно совместить с данным отрезком, перемещая их 
как твердые тела.
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Теперь нам нужно определить сложение длин как сложение 
классов. (Здесь наблюдается значительное сходство с определени-
ем сложения натуральных чисел.) Итак, возьмем два произволь-
ных не налегающих друг на друга отрезка из двух не обязательно 
различных классов (обозначим эти отрезки a и b) и приставим от-
резок b к отрезку a, образовав новый отрезок с.

Запишем это в виде
c = a  b.

Каждому из отрезков a, b, c отвечает его класс, который обозна-
чим соответственно через 

|a|, |b|, |c|.
Класс |c| будем называть суммой классов |a| и |b| и обозначать 

это в виде:
|c| = |a| + |b|.

Очевидно, что класс |c| не зависит от выбора конкретных отрез-
ков из классов |a| и |b|.

Таким образом, операция сложения наших классов определена 
корректно. Тем самым справедливость колмогоровской Аксиомы 1 
установлена.

Замечание. Скажем, что отрезок с разбит на отрезки a1 и b1, 
если справедливо c = a1  b1, где a1 и b1 – части отрезка с. Из данно-
го выше определения сложения длин, очевидно, следует, что если 
отрезок c разбит на части двумя разными способами:

c = a1  b1, c = a2  b2, 
то суммы длин соответствующих частей будут одинаковы:

|a1| + |b1| = |a2| + |b2|.
Это соображение мы не будем повторять в дальнейшем 

при определении сложения других величин.
Покажем теперь, что определенное выше сложение классов (т.е. 

сложение длин отрезков) коммутативно.
Проще всего это сделать так, как показано на рис. 9.1. Отрезок 

a  b поворачиваем на 180 градусов, не меняя его длины, в резуль-
тате имеем
 a  b = b  a,  (9.7)

откуда и следует коммутативность сложения соответствующих 
классов:
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 |a| + |b| = |b| + |a|. (9.8)

Рис. 9.1

Ассоциативность сложения длин отрезков геометрически уста-
навливается еще проще.

Действительно, геометрически очевидно, что для любых (не на-
легающих друг на друга) отрезков a, b, c
 (a  b)  c = a  (b  c),  (9.9)

откуда и следует ассоциативность сложения соответствующих 
классов (т.е. длин отрезков):
 (|a| + |b|) + |c| = |a| + (|b| + |c|). (9.10)

Итак, справедливость Аксиомы 2 также установлена.
Замечание. Существует еще один способ доказательства ком-

мутативности и ассоциативности сложения длин отрезков, кото-
рый пригодится нам в дальнейшем в более сложной ситуации. Ог-
раничимся новым доказательством коммутативности.

Будем для простоты считать, что отрезки a и b соизмеримы, т.е. 
существует отрезок e укладывающийся в точности n раз в отрезке 
a и в точности m раз в отрезке b (здесь n и m – любые натуральные 
числа). Мы будем обозначать это так:
 a = ne, b = me. (9.11)

Тогда равенство (9.7) очевидным образом следует из (9.11) 
и коммутативности сложения натуральных чисел:

n + m = m + n.
Задача. Доказать, что диагональ квадрата не соизмерима с его 

стороной.
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Замечание. Справедливость для длины отрезков приведенных 
выше колмогоровских Аксиом 3 и 4 будем считать геометрически 
очевидной; выполнение остальных колмогоровских аксиом при-
мем без доказательства.

Замечание. Длину ломаной линии определяют как сумму длин 
составляющих ее отрезков. Длину кривой линии определяют с по-
мощью предельного перехода, вписывая в нее ломаные, длины зве-
ньев которых неограниченно уменьшаются.

Замечание. Метр как универсальная единица измерения 
длины был введен в 1791 году во время Французской револю-
ции. Было принято решение в качестве метра взять одну соро-
камиллионную долю длины Парижского меридиана; был изго-
товлен из сплава платины и иридия соответствующий эталон. 
В настоящее время требования к точности измерений сущест-
венно возросли, и в качестве нового эталона длины использу-
ется расстояние, проходимое светом в вакууме за время, равное 
1 / 299 792 458 доле секунды.

9.4. МАССА

Определим массу груза как класс грузов, растягивающих вер-
тикально подвешенную идеальную пружину до одной и той же от-
метки (на одну и ту же длину).

Теперь нужно определить сумму масс как сумму классов. Де-
лается это очевидным образом. Берутся два груза из классов М1 
и М2 (классы эти могут совпадать), важно при этом, чтобы у грузов 
не было общих частей. Объединение взятых грузов естественным 
образом порождает новый класс М3, который мы назовем суммой 
классов М1 и М2 :

М3 = М1 + М2.
Коммутативность и ассоциативность сложения масс оче-

видным образом проверяется экспериментально (см. рис. 9.2 
и 9.3).
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 Рис. 9.2.  Рис. 9.3

Итак, справедливость колмогоровских Аксиом 1 и 2 для массы 
установлена. Остальные аксиомы принимаем без доказательства.

Замечание. В качестве универсальной единицы массы во вре-
мя Французской революции была принята масса кубического 
децимет ра воды при температуре 4 градуса по Цельсию и атмо-
сферном давлении в 1 атмосферу. Тогда же был изготовлен соот-
ветствующий эталон из сплава платины и иридия. Этот эталон хра-
нится во Франции (в городе Севр) под стеклянным колпаком.

9.5. ВРЕМЯ. ДЛИТЕЛЬНОСТЬ ОТРЕЗКА ВРЕМЕНИ

Время, пожалуй, наиболее трудное для анализа понятие. Преж-
де всего, условимся, что отрезок времени – это совокупность всех 
мгновений между двумя различными мгновениями. (Таким обра-
зом, отрезок времени – это некий аналог геометрического понятия 
«отрезок».)

Теперь нас будет интересовать вопрос о том, когда двум вре-
менным отрезкам можно приписать одинаковую длительность. 
Непосредственно перемещать отрезки времени, с тем чтобы «при-
ложить их друг к другу», мы не можем. Поэтому приходится идти, 
так сказать, «окольным путем».

В физике существует важное понятие идеальных часов [2].
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Идеальные часы – это движущаяся система тел, удовлетворя-
ющая двум условиям:
а) система не испытывает воздействий со стороны окружаю-

щего мира, т.е. является изолированной;
б) в некоторый момент времени система возвращается в состо-

яние, в котором находилась в некоторый предшествующий 
момент времени.
В качестве модели таких часов можно использовать, напри-

мер, горизонтально расположенный тяжелый диск, вращаю-
щийся без трения вокруг вертикальной оси.

Еще одна модель идеальных часов – маятник, качающийся 
без трения. (Конечно, полностью избавиться от трения в реаль-
ности мы не можем, так что речь идет о некоторой идеализации 
реальных физических процессов.)

Итак, у нас имеются две различные модели идеальных часов: 
диск и маятник. Существенно, что эти модели никак не связа-
ны между собой – ни механически, ни каким-либо физическим 
законом. Тем удивительнее закономерность, которую мы будем 
наблюдать.

Эта закономерность заключается в следующем. Каждый 
раз, когда маятник совершит одно качание, диск (почему-то!) 
повернется на один и тот же угол (сделает одно и то же количе-
ство оборотов). Таким образом, наша пара независимых друг 
от друга идеальных часов показывает нам, что мы находимся 
в равномерно текущем потоке времени. Это значит, что если 
сегодня господин N успевает добраться из дома до работы, 
например, за 17 полных оборотов нашего идеального диска, 
то завтра он снова (при аналогичной работе транспорта) успе-
ет добраться из дома до работы опять за 17 оборотов нашего 
диска.

Скажем теперь, что два отрезка времени имеют одинаковую 
длительность, если диск идеальных часов повернется в течение 
каждого из этих отрезков времени на один и тот же угол (сдела-
ет одно и то же число оборотов). Класс, состоящий из всех от-
резков времени, имеющих одну и ту же длительность, назовем 
длительностью этих отрезков времени.
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Наконец, нам осталось определить сложение длительностей 
отрезков времени.

Сделать это теперь легко.
Пусть Т1 – длительность отрезка времени, в течение которого 

наш идеальный диск успевает совершить n оборотов (n – любое 
положительное, не обязательно целое число), а Т2 – длительность 
отрезка времени, в течение которого наш идеальный диск успе-
вает совершить m оборотов (m – любое положительное, не обяза-
тельно целое число). Тогда суммой Т1 + Т2 будем считать длитель-
ность отрезка времени, за который наш диск успевает совершить 
n + m оборотов.

Коммутативность и ассоциативность сложения длительностей 
следует из коммутативности и ассоциативности сложения веще-
ственных чисел. Итак, справедливость колмогоровских Аксиом 1 
и 2 для длительностей отрезков времени установлена. Остальные 
колмогоровские аксиомы для длительности отрезков времени 
принимаем без доказательства.

Замечание. Вместо «длительность отрезка времени, за кото-
рый происходит то-то и то-то» принято говорить просто «время, 
за которое происходит то-то и то-то».

Замечание. Как известно, время «всегда идет вперед». Это 
связано с физическим законом возрастания энтропии (возраста-
ния беспорядка в необратимых процессах). Если мы посмотрим 
снятый на пленку фильм, в котором осколки, лежащие на полу, 
сами собираются в чашку и запрыгивают на стол – это будет оз-
начать, что фильм демонстрируется в обратном направлении, по-
скольку в природе такие процессы невозможны.

Замечание. Основная единица измерения времени – секунда, 
это 1 / 24 ∙ 60 ∙ 60 доля средних солнечных суток.

Замечание. Длина, масса, время (точнее – длительность 
отрезка времени) – это величины, которые принято считать 
первичными, основными. Остальные величины, которые нам 
встретятся обычно называют вторичными (производными). 
Это связано с тем, что измерение вторичных величин может 
быть сведено к измерению первичных и к последующим вы-
числениям.
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9.6. УГОЛ. ВЕЛИЧИНА УГЛА
Мы будем называть углом часть плоскости, содержащую хотя 

бы одну внутреннюю точку и ограниченную двумя лучами – сто-
ронами угла, исходяшими из одной точки, называемой вершиной 
угла.

Угол называют развернутым, если его стороны образуют еди-
ную прямую.

Угол называют полным, если он содержит внутренние точки, 
а его стороны совпадают.

Таким образом, развернутый угол – это полуплоскость, а пол-
ный угол – вся плоскость целиком.

Будем говорить, что два угла равны по величине, если их можно 
совместить, перемещая, как твердые тела. Класс всех углов, рав-
ных по величине, будем называть величиной угла (точнее: величи-
ной любого из углов, входящих в этот класс).

Если Ф – некоторый угол, его величину будем обозначать че-
рез |Ф|.

Попробуем теперь определить сложение величин углов (т.е. 
сложение классов углов). Выберем из каждого класса соответст-
венно по углу Ф1 и Ф2 и (перемещая их как твердые тела) постара-
емся разместить их на плоскости так, чтобы:
а) у Ф1 и Ф2 была общая вершина и одна общая сторона;
б) у пересечения Ф1 и Ф2 не было общих внутренних точек.
Если это удается сделать, то получившаяся фигура будет, оче-

видно, углом (так же, как Ф1 и Ф2), который мы обозначим через
Ф1 Ф2. Соответствующий класс углов |Ф1 Ф2| мы и будем счи-
тать суммой классов |Ф1| и |Ф2|.

Итак, складывать величины углов удается не всегда, так что ве-
личина угла, строго говоря, не является аддитивной колмогоров-
ской величиной. Тем не менее можно показать, что для любых 
двух величин углов справедливо утверждение (9.3) теоремы 9.1. 
Поэтому у нас имеется возможность выбрать единицу измерения 
величины угла; в качестве такой единицы измерения обычно ис-
пользуется градус – 1 / 360 доля полного угла.

Величины углов можно сравнивать. Скажем, что |Ф1| < |Ф2|, 
если угол Ф1 удается разместить строго внутри угла Ф2, причем 
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так, что вершины этих углов совпадут. Нетрудно понять, что такое 
определение отношения «меньше» для величин углов согласуется 
с введенной выше операцией сложения этих величин.

Замечание. Для измерения величин углов, как известно, ис-
пользуют транспортир.

Замечание. Измерить величину угла можно и не прибегая 
к транспортиру. Пусть Ф1 и Ф2 – два не налегающих друг на друга 
угла с обще вершиной в точке О. Нарисуем окружность радиуса R 
с центром в точке О и обозначим через |L1| и |L2| длины дуг, высека-
емых соответственно углами Ф1 и Ф2 на этой окружности. Можно 
показать, что

справедливо равенство
 |Ф1| / |Ф2| = |L1| / |L2|. (9.12)

Пусть теперь Ф – произвольный угол с центром в точке О, а L – 
дуга, высекаемая этим углом на нарисованной нами окружности. 
Нетрудно видеть, что отношение |L| / |R| не зависит от радиуса про-
веденной окружности.

Возьмем теперь в качестве новой единицы измерения величину 
такого угла Ф0, для которого соответствующее отношение равно 1, т.е.
 |L0| = |R| (9.13)

(см. рис. 9.4).

Рис. 9.4
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Эта новая единица измерения угла называется радианом и вво-
дится обозначение:
 |Ф0| = 1рад. (9.14)

Далее, длина окружности, как известно из школы, равна 2π|R|, 
поэтому для величины полного угла П в силу (9.12), (9.13) будем 
иметь:
 |П| / |Ф0| = 2π|R| / |R| = 2π. (9.15)

Итак, в силу (9.14), (9.15)
|П| = 2π|Ф0| = 2π ∙ рад.

С другой стороны, 
|П| = 360 ̊, 

Поэтому окончательно получаем связь между двумя единицами 
измерения величин углов:
 1̊ = (2π / 360)рад. (9.16)

9.7. ПЛОЩАДЬ

У каждой плоской геометрической фигуры, ограниченной 
замкнутой ломаной или гладкой кривой, есть площадь.

Сейчас мы займемся аккуратным введением этого понятия.
Для того чтобы сделать изложение максимально простым 

и кратким, будем считать, что все рассматриваемые нами фи-
гуры нарисованы на листе плотной бумаги толщиной 1 мм.

Скажем, что две (не налегающие одна на другую) плоские 
фигуры имеют одинаковую площадь, если, будучи вырезанны-
ми из листа бумаги, они уравновешивают друг друга на чашеч-
ных весах. (Вариант: растягивают вертикально подвешенную 
идеальную пружину до одной и той же отметки.)
Класс уравновешивающих друг друга (после вырезания 

из бумаги) плоских фигур назовем площадью каждой из этих 
фигур.

Замечание. Нетрудно понять, что, при таком определении 
площади, у двух конгруэнтных (т.е. совпадающих при наложе-
нии) фигур площади будут одинаковы.

Далее, мы можем определить сложение площадей точно так 
же, как это было сделано выше для масс.
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Замечание. Будем обозначать площадь фигуры буквой S. Бу-
дем также говорить, что фигура Q разбита фигуры Q1 и Q2, если 
Q = Q1  Q2, причем Q1  Q2 = .

Очевидно, что при нашем подходе площадь S ограниченной фи-
гуры Q, разбитой на фигуры Q1 и Q2, оказывается равной сумме 
площадей своих частей:
 S(Q) = S(Q1) + S(Q2). (9.17)

Аналогичным образом экспериментально устанавливается, 
что операция сложения площадей коммутативна и ассоциативна. 
Тем самым колмогоровские Аксиомы 1 и 2 установлены. Осталь-
ные аксиомы принимаем без доказательства.

Теперь нам предстоит ввести единицу измерения площади, обо-
значим эту единичную площадь через Р. Нам будет удобно привя-
зать единицу измерения площади к единице измерения длины Х, 
мы будем записывать это в виде

Р = Р(Х).
А именно, возьмем в качестве Р(Х) площадь квадрата, длина 

стороны которого равна Х.
Пусть теперь Q – произвольно взятая плоская фигура, S(Q) – ее 

площадь. Тогда по теореме 9.1
 S(Q) = w(X)P(X),  (9.18)

где w(X) – положительное вещественное число (мера величины 
S(Q) при единице площади P(X)).

Перейдем теперь к новой единице длины Y = X / k, где k – нату-
ральное число.

Тогда прежний единичный квадрат (со стороной длины Х), оче-
видно, разобьется на k2 новых единичных квадратов (со сторонами 
длины X / k), поэтому в силу (9.17) имеем
 P(X) = P(X / k) + P(X / k) +... + P(X / k) = k2P(X / k). (9.19)

Можно показать, что соотношение (9.19) остается справедли-
вым при любом k > 0 (не обязательно натуральном). Учитывая 
это обстоятельство, используют следующую условную запись, 
связывающую единицу площади с единицей длины:
 P(X) = X2. (9.20)

Подставляя (9.20) в (9.18), окончательно получаем
 S(Q) = w(X)X2. (9.21)
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Пример. Пусть Q – изображение Антарктиды на настенной 
гео графической карте, причем

S(Q) = 0,5 м2.
Тогда, очевидно, будем иметь

S(Q) = 0,5(10 дм)2 = 50 дм2;
S(Q) = 0,5(100 см)2 = 5000 см2.

Замечание. Пусть Пa, b – прямоугольник, численные значения 
длин сторон которого (при единице длины Х) равны соответствен-
но a и b (где a и b – натуральные числа). Нетрудно видеть, что тогда 
этот прямоугольник может быть разбит на ab единичных квадра-
тов. Таким образом, в силу определения сложения для площадей 
имеем:
 S(Пa, b) = X2 + X2 + … X2 = abX2,  (9.22)

а численное значение площади этого прямоугольника (при еди-
нице площади Х2) соответственно равно ab. Можно показать, 
что формула (9.22) сохраняет свою силу при любых положитель-
ных a и b.

Пусть теперь Ta, h – треугольник, у которого численное значение 
длины основания равно a, а численное значение длины опущен-
ной на это основание высоты равно h (при единице длины Х). Не-
трудно перекроить этот треугольник в прямоугольник, у которого 
численные значения длин сторон будут соответственно равны a 
и h / 2 (см. рис. 9.5).

Отсюда, учитывая (9.22), сразу получаем известную формулу:
 S(Ta, h) = (ah / 2)X2. (9.23)

Рис. 9.5
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Замечание. Вырезание фигур из бумаги с целью измерения их 
площади при помощи взвешивания практически неудобно и не всег-
да осуществимо. На практике пользуются палеткой – прозрачной бу-
магой, разграфленной вертикальными и горизонтальными линиями 
на «единичные» квадраты. (Площадь такого квадрата принимается 
за единицу площади.) Палетку налагают на исследуемую плоскую 
фигуру и затем подсчитывают число n «единичных» квадратов, по-
павших целиком внутрь фигуры, а также число m «единичных» ква-
дратов, имеющих с данной фигурой хотя бы одну общую точку. Зна-
чение n + m/2 вычисляется несколько раз. Среднее арифметическое 
этих результатов принимается за численное значение площади при 
данной единице измерения. 

Замечание. Равновеликость и равносоставленность
Многоугольники (и вообще любые плоские фигуры) называют-

ся равновеликими, если их площади равны.
Многоугольники называются равносоставленными, если их мож-

но разбить на конечное число соответственно конгруэнтных друг дру-
гу многоугольников. На рис. 9.5 фигуры A и B равносоставлены.

Рис. 9.6

Справедливо следующая замечательная теорема, доказанная 
Я. Больяи и П. Гервином в XIX веке: Равновеликие многоугольники 
равносоставлены. (Обратное утверждение очевидно.)

9.8. ОБЪЕМ

Величина «объем» вводится аналогично величине «площадь».
Скажем, что два тела имеют одинаковый объем, если при по-

гружении в сосуд с водой они вытесняют одно и то же количест-
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во жидкости (жидкость поднимается до одной и той же отметки). 
Класс тел, имеющих один и тот же объем, называют объемом каж-
дого их тел, входящих в этот класс.
Сложение объемов двух тел, не имеющих общих частей, опре-

деляется следующим образом. Оба тела погружаются в сосуд 
с жидкостью одновременно; класс тел, вытесняющих столько же 
жидкости, сколько эти два тела вместе, назовем суммой объемов 
упомянутых двух тел.

Коммутативность и ассоциативность сложения объемов прове-
ряется экспериментально. Тем самым колмогоровские Аксиомы 1 
и 2 можно считать установленными. Остальные аксиомы принима-
ем без доказательства.

Таким образом, мы считаем, что к объему (так же, как и к пло-
щади) применима теорема 9.1, существенно облегчающая изложе-
ние материала.

Теперь нам нужно ввести единицу объема; в качестве такой 
единицы удобно взять объем куба со стороной единичной дли-
ны X. Рассуждая подобно тому, как это было сделано в случае 
площади, заключаем, что в качестве единицы объема следует 
взять X3.

Далее, пусть Q – произвольно взятое объемное тело, V(Q) – его 
объем. Тогда по теореме 9.1
 V(Q) = w(X)X3,  (9.24)

где w(X) – положительное вещественное число (мера величины 
V(Q) при единице объема X3).

Замечание. Пусть Пa, b, c – прямоугольный параллелепипед, чи-
сленные значения длин сторон которого (при единице длины Х) 
равны соответственно a, b и c (где a, b, c – натуральные числа). Не-
трудно видеть, что этот параллелепипед может быть разбит на abс 
единичных кубов. Таким образом, в силу определения сложения 
для объемов имеем:
 V(Пa, b, c) = X3 + X3 + … X3 = abcX3,  (9.25)

а численное значение объема этого прямоугольного параллеле-
пипеда (при единице объема Х3) соответственно равно abc. Можно 
показать, что формула (9.25) сохраняет свою силу при любых по-
ложительных a, b, c.
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Замечание. Когда речь идет о полых (или содержащих пусто-
ты) телах термин объем приобретает некоторую двусмысленность. 
Что такое объем стеклянной банки – это объем жидкости, которую 
в нее можно залить или объем, занимаемый стеклом, из которого 
сделана банка? Для того, чтобы полностью избежать такой дву-
смысленности, в начальной школе специально вводят термин вме-
стимость, когда речь идет о сосудах, ящиках и т.д.

Измерять вместимость сосудов можно, заливая в них извест-
ный объем жидкости. Вместимость чемоданов, ящиков и шкафов 
таким способом измерить, очевидно, не удастся – вместимость та-
ких предметов проще вычислить, чем измерить. Однако, в прин-
ципе, измерение их вместимости можно осуществить, подсчиты-
вая число кубиков заданного размера, которые удалось разместить 
внутри полости.

Пример. Примем, что объем V(K) ванной комнаты K равен 
2 м × 3 м × 4 м = 24 м3. Тогда

V(K) = 24(10 дм)3 = 24 000 дм3;
V(K) = 24(100 см)3 = 24 000 000 см3.
Замечание. Аналог теоремы Я. Больяи и П. Гервина о равно-

великости и равносоставленности для многогранников неверен. 
Справедливо следующее утверждение, доказанное М. Деном 
в 1901 году: Правильный тетраэдр не равносоставлен с кубом 
равного объема.

9.9. СКОРОСТЬ КАК ПРОИЗВОДИТЕЛЬНОСТЬ

Обозначим через Z некоего производителя (ткача, фабрику, ар-
тель), выпускающего шелковую нить. Обозначим через l единицу 
измерения длины, а через T – единицу измерения времени (дли-
тельности).

Этот производитель работает всегда в одном и том же режи-
ме: за первый отрезок времени длительностью 3T он выпустил 
нить длиной 7l, за второй такой же отрезок времени – тоже нить 
длиной 7l и т.д. Составим таблицу, в которую занесем длину 
произведенной нити и соответствующее затраченное время (см. 
табл. 9.1).
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Таблица 9.1
Длина нити 7l 14l 21l 28l 35l
Время 3T 6T 9T 12T 15T
Мы видим, что отношение численного значения длины нити 

к численному значению затраченного времени всегда одно и то же:
 7 / 3 = 14 / 6 = 21 / 9 = 28 / 12 = 35 / 15 = … (9.26)

Определим скорость v равномерно идущего производства нити 
как отношение длины произведенной нити к затраченному време-
ни. В рассматриваемом случае скорость, с которой работает произ-
водитель Z, равна

v(Z) = .
Удобно считать отношение l / T единицей измерения скорости 

(при данных единицах длины и времени), тогда выражение для ско-
рости v производителя Z может быть записано в виде произведения:
 v(Z) = ,  (9.27)

где 7 / 3 – численное значение скорости. При изменении единиц 
длины и времени численное значение скорости преобразуется пра-
вильно (в соответствии со здравым смыслом, т.е. новое численное 
значение характеризует тот же самый процесс). Введем, например 
новую единицу времени по формуле:

t = T / 10.
Понятно, что за промежуток времени, в 10 раз более короткий, 

длина произведенной нити должна быть в 10 раз меньше. Подстав-
ляя в (9.27) выражение для T из предыдущего равенства, получаем:

v(Z) =  = .

Определим теперь сложение скоростей следующим естествен-
ным образом. Пусть v(Y) = 5  и v(W) = 3  – скорости, с которыми 
соответственно работают производители нити Y и W. Составим та-
блицу, аналогичную табл. 9.1.

Таблица 9.2
Длина нити Y 5l 10l 15l 20l 25l
Длина нити W 3l 6l 9l 12l 15l
Длина нити 
суммарная

(5 + 3)l 2(5 + 3)l 3(5 + 3)l 4(5 + 3)l 5(5 + 3)l

Время T 2T 3T 4T 5T
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Мы видим, что отношение численного значения суммарной 
длины нити к численному значению затраченного времени снова 
всегда одно и то же:

(5 + 3) / 1 = 2(5 + 3) / 2 = 3(5 + 3) / 3 =
= 4(5 + 3) / 4 = 5(5 + 3) / 5 = 8.

Итак, в соответствии с принятым выше определением, скорость 
«суммарного» производства нити оказывается равной 8 , эту ско-
рость мы и будем считать суммой скоростей, с которыми работают 
производители Y и W:

v(Y) + v(W) = 5  + 3  = 8 .
Аналогичным образом определяем сумму скоростей в общем 

случае:
 k  + q  = (k + q)  (9.28)

(здесь k и q – произвольные положительные числа). Очевидно, 
что введенная операция сложения скоростей коммутативна и ас-
социативна в силу коммутативности и ассоциативности сложения 
вещественных чисел.

Замечание. Можно показать, что введенная таким образом ве-
личина «скорость» удовлетворяет всем колмогоровским аксиомам.

Пример. Портной Y шьет 5 костюмов в год, а портной W шьет 
3 костюма в год. За сколько лет портные Y и W, работая вместе, 
сошьют 80 костюмов?
Решение. Сумма скоростей портных Y и W равна

 +  = , 

откуда, очевидно, следует, что для пошива 80 костюмов порт-
ным Y и W потребуется 10 лет.

9.10. СТОИМОСТЬ

Назовем стоимостью товара массу золота, на которую этот то-
вар можно обменять на свободном рынке. Понятно, что речь мо-
жет идти только о некоторой усредненной величине, так как раз-
ные покупатели могут предлагать разные условия сделки. К тому 
же стоимость товара может значительно меняться в зависимости 
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от времени и географического положения покупателя. С учетом 
вышесказанного, на каком-то базовом, начальном уровне говорить 
о стоимости можно просто как о массе золота. С этой точки зрения 
названия мировых валют – евро, фунт, рубль, доллар и др. оказыва-
ются просто-напросто различными единицами массы золота.

9.11. ЦЕНА

Для простоты мы будем говорить о цене сыпучих или жид-
ких товаров. Тогда цена – это стоимость единицы массы товара. 
Для определенности мы будем говорить о ценах в рублях за ки-
лограмм. Удобна и согласуется со здравым смыслом запись 
руб/кг для обозначения «единицы измерения» цены. Кавычки 
здесь поставлены потому, что цена не является аддитивной кол-
могоровской величиной. Например, если цена древесных опилок 
1 руб/кг, а цена пшеничной муки 100 руб/кг, то 101 руб/кг не будет 
ценой смеси древесных опилок с мукой.

Тем не менее запись цены товара в виде произведения N руб/кг, 
где N – положительное вещественное число, осмысленна и чрез-
вычайно удобна при пересчете в случае изменения типа валюты, 
в которой производится денежный расчет, а также изменения еди-
ницы массы.

Пример 1. Примем, как и выше, что цена пшеничной муки рав-
на 100 руб/кг. Требуется пересчитать эту цену в копейках за грамм.

Имеем: 1 руб = 100 коп., 1 кг = 1000 г, откуда

 100 руб/кг = 100  = 10 коп/г. (9.29)

Пример 2. (Продолжение). Вычислим теперь цену пшеничной 
муки в пиастрах за пуд, зная, что 
 1 пуд = 16,38 кг,  
 1 кг = 0,061 пуда,  (9.30)

и приняв (условно), что 
 1 рубль = 0,25 пиастра. (9.31)

Имеем тогда:
 100 руб/кг = 100  = 409,8 пиастров/пуд. (9.32)
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9.12. ЦЕНА (ПРОДОЛЖЕНИЕ)
В предыдущем параграфе мы говорили об удобстве записи 

цены в виде произведения числа N («численного значения цены») 
на «единицу цены», выраженную дробью:

руб/кг, коп/г, пиастр/пуд и т.д.
Как уже было сказано выше, цена не является аддитивной кол-

могоровской величиной, поэтому, используя такую запись, ссы-
латься на теорему 2.1 мы не можем. Следовательно, представляет 
интерес независимое обоснование записей вида (9.29) и (9.32). Та-
кое обоснование мы проведем сейчас, разбирая Пример 2 из пре-
дыдущего параграфа.

Итак, будем, как и в предыдущем параграфе, считать, что:
 цена пшеничной муки = 100 рублей за 1 килограмм (9.33)

и, кроме того, справедливы соотношения (9.30) и (9.31). Наша 
цель – узнать, сколько пиастров потребуется заплатить за 1 пуд та-
кой муки. Задача решается в два этапа.

1-й шаг. Как мы знаем (см. (9.30)), 

1 пуд =  кг = 16,38 кг.

Следовательно, за 1 пуд придется заплатить в 16,38 раз больше, 
чем за 1 кг муки. Итак, 

цена пшеничной муки = 16,38 ∙ 100 рублей за пуд = 
  = 100 рублей за пуд. (9.34)

2-й шаг. Выясним теперь, опираясь на (9.31) и (9.34), сколько 
пиастров стоит 1 пуд.

Так как 1 руб = 0,25 пиастра, то каждый из заплаченных рублей 
заменяем на 0,25 пиастра, в результате вся сумма умножается на 0,25:

цена пшеничной муки = 
  =  ∙ 100 пиастров за пуд. (9.35)

Итак, мы видим, что при изменении единицы массы и наимено-
вания валюты цена товара преобразуется так, как если бы ее «чи-
сленное значение» было умножено на дробь вида

.
Иными словами, мы обосновали подход, изложенный в преды-

дущем параграфе.
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ЗАДАЧИ К ГЛАВЕ 9
1. Являются ли рост человека и его вес величинами одного рода?
2. Являются ли рост человека и глубина моря величинами од-

ного рода?
3. Что такое длина отрезка?
4. Сколько миллиметров в ста километрах?
5. Что такое масса? Чем отличаются масса предмета и его вес?
6. Изменится ли масса килограммовой гири, если эту гирю пе-

реместить на Луну?
7. Сколько пудов в одной тонне?
8. Что такое длительность отрезка времени?
9. Какие вы знаете приборы для измерения времени (длитель-

ности отрезков времени)?
10. Имеются песочные часы на 8 и на 11 минут. Как с их помо-

щью отмерить полчаса?
11. Сколько раз в неделю часовая и минутная стрелки на пра-

вильно идущих часах: а) сливаются; б) образуют единый отрезок?
12. Что такое площадь плоской фигуры?
13. Предложите способ определения площади искривленной 

поверхности.
Задачи 14–17 взяты из [3].
14. Как перекроить трапецию в параллелограмм?
15. Как перекроить трапецию в прямоугольник?
16. Как перекроить трапецию в треугольник?
17. Как перекроить квадрат в два одинаковых квадрата меньше-

го размера?
18. Что такое стоимость товара?
19. Что такое цена товара?
20. Величины «скорость» и «цена» определены похожим обра-

зом. Объясните, почему скорости можно складывать, а цены – 
нельзя.
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ГЛАВА 10.
ИНФОРМАЦИОННЫЕ МОДЕЛИ 

НА ГРАФАХ

Теория графов, начало которой было положено Леонардом 
Эйлером (1736), сегодня широко применяется в математике, 
физике, электронике, экономике, программировании и других 
прикладных научных областях. Графы являются основным 
средством для описания структур сложных объектов. С их по-
мощью можно описать вычислительную сеть, транспортную 
систему, схему авиалиний и другие объекты. С помощью гра-
фов удобно решать разнообразные задачи и головоломки. Гра-
фы широко используются и непосредственно при изучении 
различных разделов математики и информатики. Наглядность 
и интуитивная понятность графов позволяют обучающимся 
применять некоторые алгоритмы на графах без их формального 
описания, начиная с самого раннего школьного возраста.

10.1. ОСНОВНЫЕ ПОНЯТИЯ

Граф – это множество элементов (вершин графа) вместе 
с набором отношений между ними. Если объекты некоторо-
го класса1 изобразить вершинами, а отношения (связи) меж-
ду ними – линиями, то мы получим информационную модель 
в форме графа.

Граф является многосвязной структурой, обладающей сле-
дующими свойствами:
1) на каждый элемент может быть произвольное количество 

ссылок;

1 Класс – множество объектов, обладающих общими признаками.
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2) каждый элемент может иметь связь с любым количеством 
других элементов;

3) каждая связка может иметь направление и вес.
Ненаправленная (без стрелки) линия, соединяющая верши-

ны графа, называется ребром. Линия направленная (со стрел-
кой) называется дугой. При этом вершина, из которой дуга 
исходит, называется начальной, а вершина, куда дуга входит, – 
конечной. Линия, выходящая из некоторой вершины и входя-
щая в нее же, называется петлей. Вершины могут изображаться 
точками, кругами, овалами, прямоугольниками и т.д.

Граф называется неориентированным, если его вершины 
соединены ребрами. Вершины ориентированного графа соеди-
нены дугами.

Например, граф, отражающий отношение «переписыва-
ются» между объектами класса «дети», может выглядеть так 
(рис. 10.1):

Рис. 10.1. Неориентированный граф отношения «переписываются»

Отношение «переписываются» («пишут письма друг другу») 
является двухсторонним (симметричным). Поэтому соответст-
вующие вершины соединены линиями без стрелок (ребрами). 
Иначе выглядит граф, отражающий отношение «пишет пись-
ма» между теми же объектами класса «дети» (рис. 10.2). Линии 
со стрелками (дуги) придают ему совершенно иной смысл.
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Рис. 10.2. Ориентированный граф отношения «пишет письма»

Путь – это последовательность ребер (дуг), по которым мож-
но перейти из одной вершины в другую. Путь по вершинам 
и ребрам графа, в который любое ребро графа входит не более 
одного раза, называется цепью. Цепь, начальная и конечная 
вершины которой совпадают, называется циклом. Простым 
циклом называется цикл, не проходящий ни через одну из вер-
шин графа более одного раза.

Примеры пути: Юра – Аня – Витя – Коля – Аня – Маша 
(рис. 10.1); Коля – Аня – Юра – Маша (рис. 10.2).

Примеры цепи: Юра – Аня – Витя – Коля (рис. 10.1); Коля – 
Аня – Юра – Маша (рис. 10.2).

Примеры цикла: Юра – Аня – Витя – Коля – Аня (рис. 10.1); 
Аня – Юра – Маша – Аня (рис. 10.2).

Подсчет простых циклов в графе – непростая задача. Для не-
которых типов графов ее можно решить с помощью специаль-
ных формул и алгоритмов. На рис. 10.3 представлен граф и про-
стые циклы, которые в нем можно обнаружить.

Рис. 10.3. Граф и его простые циклы
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Граф называется взвешенным, если его вершины или ребра ха-
рактеризуются некоторой дополнительной информацией – весами 
вершин или ребер. На рис. 10.4 с помощью взвешенного неориен-
тированного графа изображены дороги между пятью населенными 
пунктами A, B, C, D, E; веса ребер – протяженность дорог в кило-
метрах.

Рис. 10.4. Взвешенный граф

Длина кратчайшей цепи из одной вершины графа в другую 
называется расстоянием между этими вершинами. Расстояние 
между вершинами A и C равно 140.

Степень вершины графа – количество ребер и/или дуг, выхо-
дящих/сходящихся в этой вершине. Если степень вершины нечет-
ное число, вершина называется – нечетной. Если степень вершины 
число четное, то и вершина называется четной.

Связный граф – граф, в котором все вершины связаны, т.е. су-
ществует цепь, соединяющая каждые две вершины.

Полный граф – это граф, каждая пара вершин которого со-
единена ребром. n-угольник, в котором проведены все диагонали, 
может служить примером полного графа.

Граф с циклом называется сетью. Если героев некоторого ли-
тературного произведения представить вершинами графа, а суще-
ствующие между ними связи изобразить ребрами, то мы получим 
граф, называемый семантической сетью. На рис. 10.5 в виде се-
мантической сети представлена информационная модель сказки 
про Царевну-лягушку.
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Рис. 10.5. Информационная модель сказки про Царевну-лягушку

Дерево – это связный граф, в котором нет циклов, т.е. в нем 
нельзя из некоторой вершины пройти по нескольким различным 
ребрам и вернуться в ту же вершину. Отличительной особенно-
стью дерева является то, что между любыми двумя его вершинами 
существует единственный путь.

Всякая иерархическая система может быть представлена 
с помощью дерева. У дерева выделяется одна главная вершина, 
называемая его корнем. Каждая вершина дерева (кроме корня) 
имеет только одного предка, обозначенный предком объект вхо-
дит в один класс высшего уровня. Любая вершина дерева может 
порож дать несколько потомков – вершин, соответствующих 
классам нижнего уровня. Такой принцип связи называется «один-
ко-многим». Вершины, не имеющие порожденных вершин, назы-
ваются листьями.

Родственные связи между членами семьи удобно изображать 
с помощью графа, называемого генеалогическим или родослов-
ным деревом.

Частным случаем дерева является бинарное дерево, в котором 
каждая вершина может иметь не более двух потомков.
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10.2. ИСПОЛЬЗОВАНИЕ ГРАФОВ ПРИ РЕШЕНИИ ЗАДАЧ
Графы удобно использовать при решении некоторых классов 

задач.
Пример 1. Для того чтобы записать все трехзначные числа, со-

стоящие из цифр 1 и 2, можно воспользоваться графом (деревом) 
на рис. 10.6.

Рис. 10.6. Дерево для решения задачи о записи трехзначных чисел

Пример 2. Рассмотрим несколько видоизмененную классиче-
скую задачу о переправе.

На берегу реки стоит крестьянин (К) с лодкой, а рядом с ним – 
собака (С), лиса (Л) и гусь (Г). Крестьянин должен переправиться 
сам и перевезти собаку, лису и гуся на другой берег. Однако в лод-
ку кроме крестьянина помещается либо только собака, либо толь-
ко лиса, либо только гусь. Оставлять же собаку с лисой или лису 
с гусем без присмотра крестьянина нельзя – собака представляет 
опасность для лисы, а лиса – для гуся. Как крестьянин должен ор-
ганизовать переправу?

Для решения этой задачи составим граф, вершинами которого 
будут исходное и результирующее размещение персонажей на бе-
регах реки, а также всевозможные промежуточные состояния, до-
стигаемые из предыдущих за один шаг переправы. Каждую вер-
шину-состояние переправы обозначим овалом и свяжем ребрами 
с состояниями, которые могут быть из нее образованы (рис. 10.7).

Недопустимые по условию задачи состояния выделены пунктир-
ной линией; они исключаются из дальнейшего рассмотрения. На-
чальное и конечное состояния переправы выделены жирной линией.
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Рис. 10.7. Граф переправы

На графе видно, что существуют два решения этой задачи.
Приведем соответствующий одному из них план переправы:
1) крестьянин перевозит лису;
2) крестьянин возвращается;
3) крестьянин перевозит собаку;
4) крестьянин возвращается с лисой;
5) крестьянин перевозит гуся;
6) крестьянин возвращается;
7) крестьянин перевозит лису.
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Пример 3. Бобр-врач2 хочет построить три станции первой 
медицинской помощи для своих друзей-бобров в соседнем лесу. 
Он хочет расположить станции на перекрестках каналов так, что-
бы бобрам приходилось проплывать не более чем по одному вод-
ному каналу для того, чтобы получить помощь вне зависимости 
от того, где они находятся. Схема каналов приведена на рис. 10.8. 
На каких перекрестках следует расположить станции?

Рис. 10.8. Схема каналов

Решение задач такого рода может быть найдено, если в каче-
стве первого шага разместить станцию в любом месте и поме-
тить все точки, из которых можно добраться до этой станции. 
Затем можно поставить следующую станцию и снова пометить 
все точки, из которых можно до нее добраться; таким же обра-
зом поставить третью станцию. После того, как все три станции 
установлены, возможны два варианта: 1) полученное расположе-
ние станций является решением задачи; 2) одна или несколько 
точек остались непомеченными. Если решение не было найдено, 
можно убрать последнюю станцию, разместить ее в другой точке 
и проверить выполнение условия задачи. Если решение не най-
дено и в этом случае, придется отступить на шаг еще раз; если 
для последней станции нет новых вариантов расположения, надо 
искать новое расположение для второй станции и т.д. Действуя 
по такой схеме можно найти все решения. Это так называемый 
«метод поиска с возвратом».

2 Эта задача взята из материалов международного конкурса по информатике Bebras.
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Более общая задача заключается в нахождении так называемого 
«вершинного покрытия» в графе. Говорят, что подмножество вер-
шин покрывает граф целиком, когда добавление всех вершин, со-
седних вершинам этого множества, дает множество всех вершин 
этого графа. Обычно, при решении практических задач, соответст-
вующие действия проводятся на компьютере.

Что касается приведенной выше задачи, то для нее существует 
шесть правильных вариантов решения; один из вариантов – точки 
Д, З, К:
• из точек Г, Д, И можно добраться до Д;
• из точек Б, В, Е, Ж, З можно добраться до З;
• из точек А, В, Ж, К можно добраться до К.

10.3. ГРАФЫ И ТАБЛИЦЫ

Информация, представленная в форме графа, удобна для че-
ловека. А вот для компьютерной обработки данных предпочти-
тельным является их представление в табличной форме. Важно, 
что любой граф можно свести к табличной форме. Рассмотрим не-
сколько примеров.

Пример 4. Построим таблицу, соответствующую неориентиро-
ванному графу (рис. 10.9), отражающему схему дорог между неко-
торыми населенными пунктами.

Рис. 10.9. Граф схемы дорог

Строки и столбцы таблицы будут соответствовать верши-
нам графа. Если две вершины являются смежными (соединены 
ребром), то в ячейку на пересечении соответствующих столбца 
и строки будем записывать вес этого ребра. В противном случае 
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(вершины не являются смежными) в ячейку будем записывать 0. 
Получится таблица типа «объект – объект».

Такую таблицу называют матрицей смежности. Часто в ма-
трицах смежности вместо нуля ставят знак минус, что обеспечива-
ет большую наглядность.

Матрица смежности неориентированного графа симметрична 
относительно главной диагонали, идущей от левого верхнего угла 
к правому нижнему углу. У матрицы смежности ориентированного 
графа такая симметрия отсутствует.

Пример 5. Обед в школьной столовой состоит из двух блюд 
и напитка. На первое можно выбрать щи или окрошку, на второе – 
плов или пельмени, на третье – сок или компот. Все возможные 
варианты представлены с помощью дерева на рис. 10.10.

Рис. 10.10. Дерево вариантов обеда
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Для того чтобы представить эту же информацию в таблице, бу-
дем двигаться по дереву от листьев к корню, описывая все возмож-
ные варианты обеда.

Получилась таблица типа «объект – свойства»: объектами в ней 
являются варианты обеда, а свойствами – составляющие его блю-
да. При этом число граф в полученной таблице соответствует чи-
слу уровней в дереве.

Пример 6. Путешественник пришел в 08:30 на автостанцию 
поселка Луговое и увидел следующее расписание автобусов:
Отправление изОтправление из Прибытие вПрибытие в Время отправленияВремя отправления Время прибытияВремя прибытия

Заречное Красное 08:55 11:25
Заречное Луговое 09:10 10:10
Заречное Озерное 10:45 12:00
Красное Озерное 07:45 08:45
Красное Заречное 09:15 11:45
Красное Луговое 09:20 10:30
Луговое Красное 08:00 09:10
Луговое Заречное 10:40 11:40
Озерное Заречное 09:00 10:50
Озерное Красное 09:25 10:35

Требуется определить самое раннее время, когда путешест-
венник сможет оказаться в пункте Озерное согласно этому рас-
писанию.
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Анализ таблицы показывает, что прямого маршрута из Лугово-
го в Озерное нет. Следовательно, путешественнику придется до-
бираться из Лугового в Озерное с пересадками. Изобразим схему 
имеющихся автобусных маршрутов в виде графа (рис. 10.11):

Рис. 10.11. Схема автобусных маршрутов

На графе отчетливо видно, что в Озерное путешественник мо-
жет попасть только из поселков Красное или Заречное (впрочем, 
это видно и по 3-й и 4-й строкам расписания). Теперь перейдем 
к построению дерева с возможными маршрутами передвижения 
путешественника (рис. 10.12):

Рис. 10.12. Дерево маршрутов

Итак, самое раннее время, когда путешественник сможет ока-
заться в пункте Озерное, 12:00; в 12:00 следующего дня (8:30, Лу-
говое – ожидаем до 10:40 автобус на Заречное – 11:40, Заречное – 
ожидаем до 10:45 следующего дня автобус на Озерное – 12:00, 
Озерное).



323

Глава 10. Информационные модели на графах

Пример 7. На рис. 10.13 представлена схема дорог, связываю-
щих населенные пункты A, B, C, D, E, F, G. В таблице содержат-
ся сведения о длинах этих дорог (в километрах). Схему и таблицу 
создавали независимо друг от друга, поэтому в них используются 
разные обозначения. Необходимо выяснить длину пути в километ-
рах из пункта D в пункт F.

Рис. 10.13. Схема дорог и таблица их длин

Рассмотрим имеющийся граф и выясним степень каждой вер-
шины – число ребер, соединяющих некоторую вершину с другими 
вершинами. Получим:

На основании имеющейся таблицы мы также можем сделать 
выводы о том, сколькими дорогами соединен тот или иной насе-
ленный пункт с другими населенными пунктами:



324

Математика и информатика. Часть 2

Сопоставив полученную информацию, можем сказать, 
что через Г1 в таблице обозначен населенный пункт F, а че-
рез Г7 – D. Согласно таблице, расстояние между этими пункта-
ми равно 25 км.

10.4. ПОИСК КОЛИЧЕСТВА ПУТЕЙ 
В ОРИЕНТИРОВАННОМ ГРАФЕ

Пример 8. На рис. 10.14 изображена схема дорог, связывающих 
торговые точки A, B, C, D, E. По каждой дороге можно двигаться 
только в направлении, указанном стрелкой. Сколько существует 
различных путей от точки A до точки E?

Рис. 10.14. Схема дорог, представленная ориентированным графом

В вершину E можно попасть только из вершин C и D. Если 
мы будем знать число путей из вершины A в вершину C и из вер-
шины A в вершину D, то, сложив их, получим искомое число пу-
тей из A в E. Действительно, для того чтобы попасть из вершины 
A в вершину Е, мы просто все пути из вершины A в вершину C до-
полним дугой CE, а пути из вершины A в вершину D дополним 
дугой DE. Число путей при этом не изменится.

Итак, число путей из вершины A в вершину E равно сумме пу-
тей из A в C и из A в D.

Можно сказать, что наша задача распалась на две более простые 
задачи. Решим каждую из них в отдельности.

В вершину C можно попасть непосредственно из вершины 
A и из вершины B. В свою очередь, существует единственный путь 
из вершины A в вершину B. Таким образом, из вершины A в вер-
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шину C можно попасть двумя путями: 1 (напрямую из A) + 1 (че-
рез B) = 2.

Что касается вершины D, она является конечной вершиной 
для трех дуг: BD, AD и CD. Следовательно, в нее можно попасть 
из вершин A, B и C:

1 (напрямую из A) + 1 (через B) + 2 (через C) = 4.
Итак, существуют четыре пути из вершины A в вершину D.
Теперь выполним подсчет путей из A в E:

2 (через C) + 4 (через D) = 6.
Решение задачи будет гораздо проще, если двигаться от верши-

ны A (начало маршрута) к вершине E и проставлять веса вершин – 
число путей из A в текущую вершину (рис. 10.15). При этом вес 
вершины A можно принять за 1. Действительно, существует един-
ственный способ попасть из A в A – оставаться на месте.

Рис. 10.15. Схема дорог, представленная взвешенным ориентированным графом

10.5. АЛГОРИТМЫ НАХОЖДЕНИЯ КРАТЧАЙШИХ ПУТЕЙ 
МЕЖДУ ВЕРШИНАМИ ГРАФА

Путь между вершинами A и B графа считается кратчайшим, 
если:
• эти вершины соединены минимальным числом ребер (в слу-

чае, если граф не является взвешенным);
• сумма весов ребер, соединяющих эти вершины, минимальна 

(для взвешенного графа).
Есть множество алгоритмов определения кратчайшего пути 

между вершинами графа, в том числе:
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1) алгоритм построения дерева решений;
2) алгоритм Дейкстры;
3) метод динамического программирования.
Построение дерева решений. При решении класса задач, свя-

занного с нахождением кратчайшего пути в ориентированном гра-
фе, можно:
• от исходного графа перейти к матрице смежности;
• по матрице смежности построить дерево решений;
• по дереву решений выбрать подходящий вариант.
Пример 9. Найдем кратчайший путь от вершины A до вершины 

F в графе, приведенном на рис. 10.16.

Рис. 10.16. Ориентированный граф

Составим матрицу смежности, соответствующую данному ори-
ентированному графу:
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По матрице смежности построим полное дерево перебора ре-
шений – рис. 10.17.

Рис. 10.17. Полное дерево перебора решений

На рис. 10.17 видно, что кратчайший путь из вершины A в вер-
шину F равен 17 и имеет вид A – B – E – F.

Алгоритм Дейкстры служит для нахождения кратчайшего 
пути между одной конкретной вершиной (источником) и всеми 
остальными вершинами графа. Суть алгоритма состоит в следую-
щем. Каждой вершине графа ставится в соответствие метка – ми-
нимальное известное расстояние от источника до этой вершины. 
Метка самого источника полагается равной 0. Алгоритм работает 
пошагово – на каждом шаге он «посещает» одну вершину и пыта-
ется уменьшать метки.

На первом шаге расстояние от источника до всех остальных 
вершин неизвестно. Метки вершин (кроме источника) считаются 
равными бесконечности, все вершины считаются непосещенными. 
Далее, из всех непосещенных вершин выбирается вершина, имею-
щая минимальную метку. Для каждого из соседей этой вершины 
(кроме отмеченных как посещенные) рассчитывается новая дли-
на пути, как сумма значений текущей метки этой вершины и дли-
ны ребра, соединяющего ее с соседом. Если полученное значение  
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длины  меньше значения метки соседа, то значение метки заменя-
ется полученным значением длины. После рассмотрения всех со-
седей вершина помечается как посещенная. Этот шаг алгоритма 
повторяется, пока есть непосещенные вершины. Работа алгоритма 
завершается, когда все вершины посещены.

Пример 10. На рис. 10.18 кружками обозначены вершины 
графа, в кружки вписаны имена вершин. Вершины соединены 
линиями – ребрами графа. Около каждого ребра обозначен его 
«вес» – длина пути. Рядом с каждой вершиной дана метка – длина 
кратчайшего пути в эту вершину из вершины A: для вершины A – 
это 0, для всех других вершин она неизвестна и обозначена знаком 
«бесконечность».

Минимальную метку (0) имеет вершина A. Ее соседи – вер-
шины B, C, D. Очередность рассмотрения соседей: B, D, C. По-
сле изменения их меток получим результат, представленный 
на рис. 18а.

а) Начальное состояние б) Шаг 1

в) Шаг 2 г) Результат работы

Рис. 10.18. Алгоритм Дейкстры
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После изменения меток всех соседей вершины A она помеча-
ется как просмотренная. Теперь минимальная метка из непросмо-
тренных вершин у вершины B. Ее соседи – вершины D и E. Так 
как 5 + 9 > 10, метка вершины D не изменяется. Вершина E полу-
чает метку 19 (рис. 10.18б).

Теперь минимальная метка из непросмотренных вершин у вер-
шины D. Ее соседи – вершины C, E и F. Так как 10 + 3 < 15, метка 
вершины C изменяется. Вершина F получает метку 18. Метка вер-
шины E не изменяется (рис. 10.18в).

Далее в качестве вершин с минимальными метками будут по-
очередно рассматриваться вершины C, F и E. К изменению меток 
соседних с ними вершин это не приведет (рис. 10.18г).

Полученные в результате работы алгоритма метки вершин гра-
фа – это и есть кратчайшие расстояния от вершины A до каждой 
из этих вершин.

Метод динамического программирования основан на том, 
что процесс решения задачи разбивается на стадии (шаги), на каж-
дой из которых принимаются решения, приводящие к достижению 
поставленной цели.

Пример 11. Предположим, персонажу некоторой игры необхо-
димо пройти по лабиринту из пункта A в пункт B, набрав при этом 
как можно меньше штрафных баллов, количество которых указано 
в клетках лабиринта, причем перемещаться можно только вверх 
или вправо. С помощью графа начальные условия могут быть за-
даны так, как показано на рис. 10.19.

Рис. 10.19. Лабиринт
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Составим таблицу, в которой каждая ячейка будет соответство-
вать определенной клетке лабиринта. Числа в ячейках будут равны 
минимальному числу штрафных баллов, которое можно получить, 
пройдя путь от начала до соответствующей клетки.

Заполнять таблицу будем снизу вверх и слева направо. 
При этом для заполнения каждой новой ячейки будем рассмат-
ривать числа двух соседних с ней заполненных ячеек, нахо-
дящихся слева от нее и под ней. Будем выбирать наименьшее 
из этих двух чисел, прибавлять к ним число текущей ячейки 
и результат записывать в нее.

Ответ равен числу в правом верхнем углу таблицы.

10.6. ГРАФЫ И ТЕОРИЯ ИГР

Теория игр – раздел современной математики, связанный с ре-
шением многих задач экономики, социологии, политологии, био-
логии, искусственного интеллекта и ряда других областей, где не-
обходимо изучение поведения человека и животных в различных 
ситуациях.

Игра выступает в качестве математической модели некоторой 
ситуации и понимается как процесс, в котором участвуют две 
и более стороны, ведущие борьбу за реализацию своих интересов. 
При этом игра характеризуется такими признаками, как:
1) присутствие нескольких игроков;
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2) неопределенность поведения игроков, связанная с имеющи-
мися у каждого из них несколькими вариантами действий;

3) различие (несовпадение) интересов игроков;
4) взаимосвязанность поведения игроков (результат, получаемый 

каждым из них, зависит от поведения всех игроков);
5) наличие правил поведения, известных всем игрокам.
Игра может быть представлена в виде дерева, каждая вер-

шина которого соответствует ситуации выбора игроком своей 
стратегии.

Мы рассмотрим игры, относящиеся к так называемым играм 
с полной информацией. В играх с полной информацией участники 
знают все ходы, сделанные до текущего момента, равно как и воз-
можные стратегии противников, что позволяет им в некоторой сте-
пени предсказать последующее развитие игры.

Выигрышная стратегия – это правило, следуя которому иг-
рок выигрывает независимо от того, как играет противник. Игрок 
имеет выигрышную стратегию, если он может выиграть при лю-
бых ходах противника. Выигрышная стратегия может быть только 
у одного игрока. Описать стратегию игрока – значит описать, ка-
кой ход он должен сделать в любой ситуации при различной игре 
противника.

Пример 12. Два игрока, Петя и Ваня, играют в следующую 
игру. Перед игроками лежит куча камней. Игроки ходят по очере-
ди, первый ход делает Петя.

За один ход игрок может выполнить одно из следующих дей-
ствий:
• добавить в кучу один камень ( + 1);
• добавить в кучу два камня ( + 2);
• увеличить количество камней в куче в 3 раза ( × 3).
Например, имея кучу из 5 камней, за один ход можно получить 

кучу из 6, 7 или 15 камней. У каждого игрока, чтобы делать ходы, 
есть неограниченное количество камней. Игра завершается в тот 
момент, когда количество камней в куче превышает 45. Победите-
лем считается игрок, сделавший последний ход, т.е. первым полу-
чивший кучу, в которой будет 46 или больше камней. Будем счи-
тать, что в начальный момент в куче S камней, 1 ≤ S ≤ 45.
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Выясним, при каких значениях числа S Петя может выиг-
рать первым ходом.

Если S = 45, то, добавив в кучу один камень ( + 1), два камня 
( + 2) или утроив количество камней в ней ( × 3), Петя становится 
победителем.

Если S = 44, то стать победителем можно, если добавить в кучу 
два камня ( + 2) или утроить количество камней в ней ( × 3).

Если S = 43, то Петя становится победителем, утроив количе-
ство камней в куче ( × 3). Также можно действовать для любого 
S ≥ 16 (16 × 3 = 48, 15 × 3 = 45).

Итак, Петя может выиграть, если S = 16, ..., 45 – это его выиг-
рышные позиции. Для выигрыша Пете достаточно увеличить ко-
личество камней в 3 раза. При меньших значениях S за один ход 
нельзя получить кучу, в которой будет 46 или более камней. Если 
же в куче будет 15 камней, то после любого хода Пети своим пер-
вым ходом может выиграть Ваня.

Действительно, при S = 15 после первого хода Пети («Ход П») 
в куче будет 16, 17 или 45 камней. Любой из этих случаев явля-
ется выигрышным для делающего ход Вани («Ход В»), которо-
му для победы достаточно увеличить количество камней в 3 раза 
(рис. 10.20).

Рис. 10.20. Позиция 15 – выигрышная для Вани
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Теперь попробуем определить значения S, при которых у Пети 
будет выигрышная стратегия, причем Петя не сможет выиг-
рать первым ходом, но сможет выиграть своим вторым ходом, 
независимо от того, как будет ходить Ваня.

Мы выяснили, что S = 15 – проигрышная позиция для любого 
игрока. Если Петя своим первым ходом сможет перевести в нее 
Ваню, то что бы ни делал последний, сам он выиграть не сможет, 
но переведет в выигрышную позицию своего соперника.

15 камней Петя может получить при S = 14 ( + 1), S = 13 ( + 2) 
или S = 5 ( × 3). Других вариантов для S нет (рис. 10.21).

Рис. 10.21. Позиции 5, 13, 14 – выигрышные для Пети

Представим всю информацию на числовой линейке:

Найдем на ней такое значение S, при котором у Вани есть 
выигрышная стратегия, позволяющая ему выиграть первым 
или вторым ходом при любой игре Пети, и при этом у Вани нет 
стратегии, которая позволит ему гарантированно выиграть первым 
ходом.
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Здесь речь идет о проигрышной позиции для первого игро-
ка. Следовательно, искать значение S надо среди позиций, не от-
меченных как выигрышные. Пусть S = 12. Каким бы ни был ход 
Пети, им он переведет своего соперника в выигрышную позицию: 
13 (12 + 1), 14 (12 + 2) или 36 (12 × 3). В последнем случае Ваня 
имеет возможность выиграть своим первым же ходом (36 × 3), 
а в первых двух случаях он должен перевести соперника в про-
игрышную позицию S = 15, что обеспечит ему выигрыш вторым 
ходом. Следовательно, позиция S = 12 – проигрышная для Пети. 
На дереве решений наши рассуждения могут быть представлены 
так, как показано на рис. 10.22.

Рис. 10.22. Позиция 12 – проигрышная для Пети

ЗАДАЧИ К ГЛАВЕ 10

1. Во дворе гуляли четверо детей. 
Стрелка задает отношение «мой родной 
брат». Отметьте на рисунке условными 
обозначениями мальчиков  и девочекк .
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2. В семье четверо детей. Стрелка 
задает отношение «мой родной брат». 
Изобразите граф, задающий отношение 
«моя родная сестра».

3. Для графов, изображенных на рисунках, подсчитайте коли-
чество вершин, количество ребер и количество простых циклов.

4. Каждый из десяти населенных пунктов соединен автодорога-
ми с девятью другими (без проезда через промежуточные пункты). 
При этом автобусное сообщение существует только между следу-
ющими населенными пунктами: Нахабино и Аникеевка, Прудок 
и Спас, Ермолино и Любань, Бужарово и Марушкино, Нахабино 
и Любань, Аникеевка и Ермолино, Спас и Бужарово, Дарна и Ка-
шино, Дарна и Спас, Кашино и Марушкино.

Постройте граф по этому описанию. Ответьте на вопросы.
1) Сколько всего существует автодорог между населенными 

пунк тами?
2) Можно ли с помощью автобусного сообщения попасть из Бу-

жарово в Дарну?
3) Можно ли с помощью автобусного сообщения попасть из На-

хабино в Прудок?
4) С каким наименьшим количеством пересадок можно доехать 

из Марушкино в Прудок?
5) Какой маршрут можно открыть, чтобы автобусное сообщение 

существовало между всеми десятью населенными пунктами?
6) Какая дополнительная информация необходима для того, что-

бы наладить автобусное сообщение между всеми населенны-
ми пунктами с наименьшими затратами?

5. При встрече каждый из одноклассников пожал руку друго-
му (каждый пожал каждому). Сколько рукопожатий было сделано, 
если друзей было трое; четверо?

6. В государстве 10 городов, из каждого выходит 2 дороги, 
кроме столицы, откуда выходит 5 дорог, и города Горный, откуда 
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выходит одна единственная дорога. Сколько всего дорог в госу-
дарстве?

7. Можно ли расположить в пространстве 7 карандашей так, чтобы 
каждый касался ровно трех других?

8. В стране Цифромании есть 6 городов с названиями 1, 2, 3, 4, 
5, 6. Руководство страны сообщило, что организует железнодорожное 
сообщение между городами, в том и только в том случае, если дву-
значное число, составленное из цифр-названий этих городов, делится 
на 2. Постройте граф, соответствующий проекту железнодорожного 
сообщения между городами Цифромании.

9. Составьте семантическую сеть по одной из русских народных 
сказок: «Колобок», «Курочка Ряба», «Репка».

10. Сколько трехзначных чисел можно записать с помощью цифр 
0, 1, 2 и 3 при условии, что в записи числа не должно быть одинако-
вых цифр? Выпишите все такие числа. Для решения задачи построй-
те и проанализируйте дерево.

11. Для составления цепочек используются бусины, помеченные 
буквами: A, B, C, D, E. На первом месте в цепочке может стоять одна 
из бусин A, C, D. На втором – любая бусина с согласной, если первая 
бусина – с гласной, и любая бусина с гласной, если первая – с соглас-
ной. На третьем месте – одна из бусин C, D, E, не стоящая в цепочке 
на первом или втором месте. Сколько цепочек можно создать по этому 
правилу? Для решения задачи постройте и проанализируйте дерево.

12. На рисунке представлено генеалогическое дерево Ивана, где 
отмечены одни мужчины.

Кем доводится Ивану Руслан?
13. Информация о родственных связях в некоторой семье пред-

ставлена следующим образом:
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parent(Юрий, Петр); parent(Анна, Ева);
parent(Ирина, Георгий); parent(Маргарита, Анна);
parent(Анна, Николай); parent(Петр, Георгий);
parent(Михаил, Николай); parent(Маргарита, Петр);
parent(Юрий, Анна); parent(Маргарита, Александр);
parent(Дарья, Руслан); parent(Александр, Руслан);
parent(Михаил, Ева); parent(Юрий, Александр).
Запись parent(A, B) означает, что A является родителем B.
Нарисуйте генеалогическое древо этой семьи. Сколько у Ирины 

племянников и племянниц?
14. В кладовке хранятся елочные игрушки – большие и малень-

кие красные и золотые шары и звезды. При этом игрушки разного 
размера, цвета и формы хранятся в отдельных коробках. Напри-
мер, в одной коробке – большие красные звезды, в другой – ма-
ленькие красные звезды и т.д. Известно, что среди игрушек нет 
ни маленьких шаров, ни маленьких золотых звезд. Всего звезд 25, 
а шаров – 17. Всего больших игрушек – 32; красных игрушек – 28. 
Золотых звезд на 2 больше, чем золотых шаров.

В скольких коробках хранятся игрушки? Сколько игрушек 
в каж дой коробке? Постройте граф, представляющий состав иг-
рушек. Используйте его для решения задачи. Представьте эту же 
информацию в табличной форме.

15. Между четырьмя местными аэропортами: ВОСТОРГ, ЗАРЯ, 
ОЗЕРНЫЙ и ГОРКА, ежедневно выполняются авиарейсы. Приве-
ден фрагмент расписания перелетов между ними:
Аэропорт вылетаАэропорт вылета Аэропорт прилетаАэропорт прилета Время вылетаВремя вылета Время прилетаВремя прилета
Восторг Горка 13:10 17:15
Озерный Заря 13:00 14:30
Озерный Восторг 12:10 14:20
Горка Озерный 11:15 15:30
Восторг Озерный 12:35 14:50
Заря Озерный 12:30 14:20
Восторг Заря 10:30 12:15
Заря Горка 14:40 16:45
Горка Заря 15:15 17:20
Озерный Горка 14:30 16:20
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Путешественник оказался в аэропорту ВОСТОРГ в полночь 
(0:00). Определите самое раннее время, когда он может попасть 
в аэропорт ГОРКА.

16. На рисунке представлена схема дорог, связывающих насе-
ленные пункты A, B, C, D, E, F, G. В таблице содержатся сведения 
о длинах этих дорог (в километрах). Схему и таблицу создавали 
независимо друг от друга, поэтому в них используются разные 
обозначения. Необходимо выяснить длину пути в километрах 
из пункта E в пункт F.

17. На рисунке представлена схема дорог, связывающих горо-
да A, B, C, D, E, F, G, H, I, J. По каждой дороге можно двигаться 
только в одном направлении, указанном стрелкой. Сколько разных 
путей существует из города A в город J?
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18. Найдите кратчайший путь от вершины A до вершины F 
в ориентированном графе:

19. Между населенными пунктами A, B, C, D, E, F построены 
дороги, протяженность которых приведена в таблице. (Отсутствие 
числа в таблице означает, что прямой дороги между пунктами нет.)

A B C D E F

A 3

B 9 4

C 3 9 3 8

D 3 2

E 4 8 2 7

F 7

Определите длину кратчайшего пути между пунктами A и F 
(при условии, что передвигаться можно только по построенным 
дорогам).

20. Шесть торговых точек А, Б, В, Г, Д, E соединены дорога-
ми с односторонним движением (направление движения указано 
стрелками, протяженность дорог в км – числами).
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Необходимо перевезти груз из точки A в точку Е.
Ответьте на вопросы.

1) Сколько существует различных вариантов маршрута?
2) Какой маршрут самый короткий?
3) Какой маршрут следует выбрать, чтобы по пути посетить все 

торговые точки?
Для решения задачи постройте и проанализируйте дерево.
21. С помощью алгоритма Дейкстры найдите кратчайший путь 

между вершинами A и G следующего графа:
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22. В материалах международного конкурса по информатике 
Bebras есть такая задача, предложенная разработчиками из Нидер-
ландов.

Бобер Билли любит желуди. Он хочет поплыть по течению и со-
брать все желуди на островах, мимо которых будет проплывать. 
Увы, течение реки настолько сильное, что он может плыть только 
вниз по течению. Какое максимальное количество желудей он смо-
жет собрать?

Решите эту задачу, воспользовавшись методом динамического 
программирования.

23. На столе лежит 25 спичек. Играют двое. Игроки по очере-
ди могут взять от одной до четырех спичек. Кто не может сделать 
ход (так как спичек не осталось), проигрывает. Другими словами, 
выигрывает взявший последнюю спичку. Выясните, у кого из иг-
роков есть выигрышная стратегия.

24. Два игрока, Петя и Ваня, играют в следующую игру. Пе-
ред игроками лежит куча камней. Игроки ходят по очереди, первый 
ход делает Петя. За один ход игрок может добавить в кучу 1 камень 
или 5 камней. Например, имея кучу из 10 камней, за один ход мож-
но получить кучу из 11 или 15 камней. У каждого игрока, чтобы 
делать ходы, есть неограниченное количество камней. Игра завер-
шается в тот момент, когда количество камней в куче становится 
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не менее 47. Победителем считается игрок, сделавший последний 
ход, т.е. первым получивший кучу, в которой будет 47 или больше 
камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 46.

Выполните следующие задания, в каждом случае обосновывая 
свой ответ.
1) Укажите все такие значения числа S, при которых Петя может 

выиграть в один ход. Обоснуйте, что найдены все нужные зна-
чения S, и укажите выигрывающие ходы.

2) Укажите такое значение S, при котором Петя не может выиграть 
за один ход, но при любом ходе Пети Ваня может выиграть 
своим первым ходом. Опишите выигрышную стратегию Вани.

3) Укажите два значения S, при которых у Пети есть выигрыш-
ная стратегия, причем Петя не может выиграть за один ход, 
но может выиграть своим вторым ходом независимо от того, 
как будет ходить Ваня. Для указанных значений S опишите вы-
игрышную стратегию Пети.

4) Укажите значение S, при котором у Вани есть выигрышная 
стратегия, позволяющая ему выиграть первым или вторым 
ходом при любой игре Пети, однако у Вани нет стратегии, ко-
торая позволит ему гарантированно выиграть первым ходом. 
Для указанного значения S опишите выигрышную стратегию 
Вани. Постройте дерево всех партий, возможных при этой вы-
игрышной стратегии Вани.

25. У исполнителя Вычислитель есть две команды, которым 
присвоены номера:
1 – прибавить 1;
2 – умножить на 2.
Сколько существует различных программ, позволяющих пре-

образовать число 1 в число 10?
Для решения задачи постройте и проанализируйте дерево.
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